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Abstract

Microphone arrays play an important role in noise re-
duction and speech enhancement. Their algorithms are
based on beamforming, which reduces the level of local-
ized and ambient noise signals while minimizing distortion
to speech from the desired direction via spatial filtering.
This paper describes a class of subband beamforming al-
gorithms. The similarity between different algorithms is
discussed. To enhance computational efficiency, the algo-
rithms are implemented in frequency domain. A hardware
architecture, with bitwidth optimization, is proposed to sup-
port the algorithms. An implementation with 7 instances on
a Xilinx XC4VSX55 FPGA at 175MHz can run 41.7 times
faster than the corresponding pure software implementation
on a 3.2GHz Pentium 4 PC.

1 Introduction
Voice input systems with various functionality have be-

come a part of our daily life. Apart from mobile communi-
cation devices, there are a wide range of other applications
including teleconferencing, voice over IP, speech recogni-
tion devices and voice telematic system in cars. For such
applications, it is crucial to have a good acoustic interface
in order to provide accurate voice control or smooth hands-
free audio communication. An essential technique to en-
hance the received signal is to employ a microphone array
so that beamforming and noise-cancelling techniques can
be applied. For instance, Philips has begun to employ a
two-microphone system in their new mobile phone design
for improved noise reduction [1].

Beamforming techniques exploit fundamental proper-
ties about the spatial and/or temporal distribution of both
the speech and noise sources, in order to enhance percep-
tion [2]. If the geometry of the problem is known, there are
several ways of designing a beamformer. One way to adapt

the beamformer for specific applications is to use sequences
of calibration signals [3]. The algorithm can be efficient if
subband processing is employed.

There are several studies about the implementation of
beamformer on reconfigured devices. A time-delay sonar
beamforming has been reported [7]. The beamformer can
achieve six times speed up over commodity DSP systems.
Another beamformer implementation involves delta-sigma
modulation, and the beamformer is applied to medical ul-
trasonic application [8]. However, these studies do not
consider subband processing and have not been applied to
acoustic applications.

While beamformers can be implemented as an
application-specific integrated circuit (ASIC), it would be
difficult to adapt such device to different environments
while maintaining the quality of the output. For instance,
in an environment with mild noise, a rather short filter
might be sufficient to suppress it. On the other hand, in a
very noisy industrial environment, very long filters would
be required to obtain reasonable speech enhancement.
As a result, filter length should be varied to adapt to the
change of environment. An ASIC implementation may fail
to operate under this environment unless the filter length
can be reconfigured in someway. A field programmable
gate array (FPGA) implementation, however, can be
dynamically reconfigured to increase the filter length while
reducing the number of filter instances. In addition, a
speech recognizer can be integrated into the FPGA to
form an system-on-a-chip (SoC) solution. Such SoC
platform can be further configured to recognize different
application-specific voice commands.

This paper covers optimal methods to find beamformers
based on sequences of calibration signals. This includes an
efficient frequency domain modified recursive least squares
adaptive algorithm (CWRLS) [4], and the maximization
of signal-to-noise ratio beamforming algorithm. The algo-
rithms share a common structure and have a lot of simi-
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larity in the implementation. It includes an adaptive fre-
quency domain structure consists of a multichannel analy-
sis filter-bank and a set of adaptive filters, each adapting on
the multichannel subband signals. The output of the beam-
formers are reconstructed by a synthesis filter-bank in order
to create a time domain output signal. Information about
the speech location is put into the algorithm by a recording
performed in a low noise situation, simply by putting cor-
relation estimates of the source signal into a memory. The
recording only needs to be done initially or whenever the
location of interest is changed. The adaptive algorithm is
then run continuously and the reconstructed output signal is
the extracted speech signal.

In order to achieve real-time performance while main-
taining better flexibility in different environments, the im-
plementation of the algorithms on a high-end FPGA is stud-
ied. The algorithm CWRLS is used as an illustration of the
hardware design. First, to achieve computational efficiency,
first of all, a frequency domain implementation (or subband
processing) is employed to speed up the convergence of the
beamformer. Then, the complete architecture is simulated
in hardware to aim for real-time operation of the final beam-
former. To summarize, the key contributions of this paper
include:

1. The first FPGA-based hardware architecture for a class
of microphone array algorithms based on the use of
calibrated signals together with subband processing.
The proposed design can efficiently reduce noise and
enhance speech quality in a time critical environment.

2. Optimization based on bitwidth analysis to explore
suitable bitwidth of the system. The optimized inte-
ger and fraction size using fixed point arithmetic can
reduce the overall circuit size by up to 80% when com-
pared with a direct realization of the software onto an
FPGA platform.

3. An evaluation of our approach, including a comparison
with a software version running on a 3.2GHz Pentium
4 machine, showing that the FPGA-based implementa-
tion at 175MHz with 7 instances can achieve speedup
of 41.7 times.

2 Background
The source is assumed to be a wideband source, as in the

case of a speech signal, located in the near field of a uniform
linear array ofI microphones. The beamformer uses finite
length digital linear filters at each microphone. The output
of the beamformer is given by,

y [n] =

I
∑

i=1

L−1
∑

j=0

wi [j]xi [n − j] (1)

whereL − 1 is the order of the FIR filters andwi [j] , j =
0, 1, · · · , L−1, are the FIR filter taps for channel numberi.

The signals,xi [n], are digitally sampled microphone obser-
vations and the beamformer output signal is denotedy [n].

Figure 1: Subband beamforming structure. The number of
subbands is K and the number of microphones is M.

These FIR filters need to be high order to capture the es-
sential information, especially if they also need to perform
room reverberation suppression. By using a subband beam-
forming scheme, the computational burden will become
substantially lower. The subband beamforming scheme
used in this study is presented in Figure 1. In this case
each microphone signal is filtered through a subband filter.
A digital filter with the same impulse response is used for
all channels, thus all spatial characteristics are kept. This
means that the large filtering problem is divided into a num-
ber of smaller problems.

The signal model can also be described in the frequency
domain1, and the filtering operations become multiplica-
tions with numberI complex frequency domain represen-
tation weights,w(f)

i . For a specific frequency,f , the output
is given by

y(f) [n] =

I
∑

i=1

w
(f)
i x

(f)
i [n] (2)

where the signals,x(f)
i [n] andy(f) [n], are time domain sig-

nals as specified before but they are narrow band, contain-
ing essentially components with frequencyf . The observed
microphone signals are given in the same way as

x
(f)
i [n] = s

(f)
i [n] +

D
∑

d=1

ν
(f)
id [n] + v

(f)
i [n] (3)

and the optimization objective will be simplified, due to the
linear and multiplicative property of the frequency domain

1The representation is made on a finite grid that can be dense. This
operation can be an FFT or a filter-bank.
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representation, as

∀f
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(4)

If a least-squares criterion is used, the objective is for-
mulated in the frequency domain as a least squares solution
defined for a data set ofN samples. However, since the ref-
erence source signal information is not directly available, a
calibration sequence gathered in a quiet environment is used
instead. This calibration signal will represent the temporal
and spatial information about the source.

The objective is to calculate

w
(k)
ls,opt(N) =

[

R̂
(k)
ss (N) + R̂

(k)
xx (N)

]

−1

r̂
(k)
s (N) (5)

where the real frequencyf = Fsk/K, with Fs the sampling
frequency andK the total number of subbands, and where
the array weight vector,w(k)

opt for the subbandk is defined
as

w
(k)
opt = [w

(k)
1 , w

(k)
2 , . . . w

(k)
I ]T . (6)

The source correlation estimates can be pre-calculated in
the calibration phase as

R̂
(k)
ss (N) =

1

N

N−1
∑

n=0

s
(k)[n]s(k)H

[n] (7)

r̂
(k)
s (N) =

1

N

N−1
∑

n=0

s
(k)[n]s(k)

r

∗

[n] (8)

where

s
(k)[n] = [s

(k)
1 [n], s

(k)
2 [n], . . . s

(k)
I [n]]T

are microphone observations when the calibration source
signal is active alone, while the observed data correlation
matrix estimatêR(k)

xx (N) can be calculated similarly.

3 The CWRLS Algorithm
We assume that the estimated correlation matrix,R̂

(k)
ss ,

and the estimated source signal cross correlation vector,
r̂
(k)
s , are made available from an initial acquisition, for each

subband. Additional disturbing and known sources with
fixed location, both point sources and others, are assumed
to be available during the acquisition phase. The source
cross correlation estimates must be acquired when only the
source signal of interest is active. For each subband signal,
k = 0, 1, · · · ,K − 1, where for each subband the corre-
sponding normalized frequency isf = 2πk/K and each
sample instantn, the observed microphone signals in sub-
band numberk are denotedx(k)

i [n], i = 1, 2, · · · , I. The
number of available samples in the acquisition phase isN .

The algorithm can be summarized as follows:

Initialize P
(k)
0 as the inverse of the correlation matrix.

Forn = 1, 2, · · ·

x
(k)
n = [x

(k)
1 [n], x

(k)
2 [n], . . . x

(k)
I [n]]T

P
(k) = λ−1

P
(k)
n−1 −

λ−2P
(k)
n−1x

(k)
n x(k)

n

H
P

(k)
n−1

1+λ−1x
(k)
n

H
P

(k)
n−1x

(k)
n

P
(k)
n = P

(k)
−

γp(1−λ)P(k)q(k)
p q(k)

p

H
P(k)

1+γp(1−λ)q
(k)
p

H
P(k)q

(k)
p

(9)

where indexp = (nmod I) + 1,

w
(k)
n = αw

(k)
n−1 + (1 − α)P(k)

n r̂
(k)
s

The output from each subband is then:

y(k)[n] = w
(k)
n

H
x

(k)
n

n is increased by one, return.

The operation phase consists of continuous decomposition
of the microphone signals into discretized frequencies, by
the subband decomposition structure. The subband weights
are updated by making use of both the memorized corre-
lation estimates and the actual microphone observations.
The output from each subband signal is reconstructed with
the reconstruction filter-bank, and the time domain output
consists of the estimate of the sound source of interest. The
algorithm is adapting continuously once the correlation
estimates are placed into memory.

The algorithm contains a step where a rank one update of
the correlation matrix is performed using scaled eigenvec-
tors, one eigenvector for each new input data vector. This
step adds correlation estimates from the source signal and in
this way, the information gathered in the acquisition phase,
will remain as a constant part of the correlation matrix while
the contributions from the environmental noise will be sub-
ject to the forgetting factor in the estimates. This procedure
forces full rank properties into the matrix inverse, indepen-
dent of actual data properties.

4 Hardware Architecture and Design
The optimal beamformer algorithm described in Sec-

tion 3 can be implemented under ergodic signal property
assumptions, where the expectation operator may be in-
terchanged with time averaging estimations. Further, the
source signal and the noise/interference- signal components
have to be accessible separately so that we may estimate
the source- and the noise/interference correlation estimates
individually. In the following it is assumed that these con-
straints are fulfilled.

In the time domain, the main operations of the CWRLS
beamformer involves those given by equations (5) and (9).
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These operations are greatly reduced by carrying out the ac-
tual filtering in the frequency domain, and transforming the
results back to the time domain described using the dataflow
shown in Figure 2. A hardware structure is designed to sup-
port the calculations. The design contains two main pro-
cessing cores: the complex matrix-vector product core and
FFT/IFFT core. The FFT core transforms the input sig-
nal from the time domain to the frequency domain, and the
IFFT core transforms the signal back to time-domain. The
multiplication core performs the filtering in the frequency
domain. The proposed hardware design performs the fol-
lowing calculations:

1. Analyse the input signal to their frequency domain rep-
resentations via FFT;

2. Filter the subband signals by the subband impulse re-
sponse estimates. The multiplication itself is a com-
plex matrix and vector product circuit;

3. Synthesize the impulse response estimates back to the
time domain via IFFT (inverse FFT).

FFT IFFT

x_in

xt_in

mic_in

CWRLS
Beamformer

CWRLS
Beamformer

CWRLS
Beamformer

CWRLS
Beamformer

.

.

.

.

.

.

y_out
MUX

T

F

24

24

24

32

32

32

32

32

32

32

32

32.
.
.

Figure 2: Dataflow of the main operations.

Once the full-band impulse response estimate is re-
constructed, the output signal can easily be calculated by
software implementation.

During profiling, time-consuming operations can be de-
termined for implementation in hardware using FPGAs. A
shared memory architecture is adopted to enable efficient
communication and exchange of a large chunk of data be-
tween the CPU and the hardware accelerator.

In contrast to software development, hardware devel-
opment provides an opportunity for bitwidth optimization:
varying the width of processing and storage units in the de-
sign to achieve the best trade-offs in size, speed and output
numerical properties, such as the signal-to-noise ratio.

Our bitwidth optimization is based on fixed-point repre-
sentation with saturation arithmetic to handle overflow con-
ditions [5]. In saturation arithmetic, if the result of an op-

eration is greater than a given maximum, it is set to that
maximum. A set of fixed-point library is developed in soft-
ware where the size of integer and fraction can be adjusted.
This library allows exploration of how bitwidth affects the
quality of the signal during beamforming.

Bitwidth analysis is used to identify a near-optimal
bitwidth for the hardware to ensure the quality of the re-
sult while reducing the area requirement. Two steps are in-
volved, dealing respectively with the integer width and the
fraction width in the fixed-point representation. First, dy-
namic range analysis techniques are used to find the integer
width. From an initial estimate and a representative col-
lection of input values, the integer width of the arithmetic
operations in the design is varied systematically to find the
smallest bitwidth such that the result remains valid. Speech
distortion and noise suppression performance measures are
used to quantify the difference in performance for differ-
ent integer sizes. Second, a similar procedure is adopted
in precision analysis to determine the fraction width. As
the fraction width decides the accuracy of the result, it can
be determined by comparing the output speech signal with
double-precision floating-point arithmetic.

The internal hardware architecture is described in Fig-
ure 3, where it is depicted at logic block level. The
core contains an operation unit, a Direct Memory Access
(DMA) read/write master pair and an On-chip Peripheral
Bus (OPB) register slave. In order to maximize system per-
formance, the FFT/IFFT and the complex multiplier are im-
plemented using the core generator provided by the vendor
tools. The FFT/IFFT component used in this project is a
Xilinx ‘128-point Pipelined’ 24-bit FFT, that allows contin-
uous data processing and achieves best transform time. The
complex multiplier has been configured to support 32-bit
input and 64-bit output. The final result has to be truncated
to 32-bit so that it can be placed onto the On-chip Mem-
ory Bus (OCM). Scaling and saturation mechanism are also
implemented to avoid overflow happening. In addition to
the FFT/IFFT and complex multiplier cores, four different
configurations of FIFOs are also generated by Xilinx core
generator as I/O buffers. By taking advantage of Xilinx
IP cores, project development time can be greatly reduced
and the quality of the design can be guaranteed. The archi-
tecture has been implemented on an FPGA platform using
VHDL. It is synthesized using Synplify Pro 8.1, placed and
routed on the Xilinx XC4VSX55-12-FF1148 [6] FPGA de-
vices using Xilinx ISE 9.1i FPGA design package.

Multiple instances of our CWRLS beamformer can be
packed in a single FPGA to boost the performance, which
would be useful especially when the design has multiple
channels. This technique can fully utilize the resource on
the FPGA to gain massive speedup.
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Figure 3: Block diagram of the hardware architecture for
CWRLS beamformer.

5 Results
Our approach is evaluated in a simulation experiment

with four microphones, where the total number of subbands
M = 128 with a decimation factorD = 64. Figure 4 illus-
trates the inputs and outputs of the CWRLS beamformer.
Given an input speech signal and a noise signal as shown
respectively in Figure 4a and 4b where the noise signal is
introduced from sample 1 to 290,000, the CWRLS beam-
former produces a filtered signal with reduced noise.

The bitwidth analysis method in Section 4 is used to de-
termine the width of integer and fraction. First, the optimal
integer width is found to be 12 bits; a further increase does
not improve the results significantly. Since overflow may
occur occasionally, saturation arithmetic helps to minimize
the impact. Second, the optimal fraction width is found to
be 20 bits without unacceptably distorting the output speech
signal. Figure 4c and 4d show the filtered signals pro-
duced by the CWRLS beamformer using double-precision
floating-point arithmetic and the 32-bit fixed-point arith-
metic that we use, illustrating their similarity. Moreover,
in our current simulation the amplitude of the noise and
the speech signals are designed to be similar. In reality,
the noise would be much weaker than the speech, so the
CWRLS beamformer can perform even better.

The proposed beamformer architecture is implemented
on Xilinx Virtex 4 device. The design is described in VHDL
and Xilinx ISE 9.1i is used in the design flow. The imple-
mentation results of single beamformer core are shown in
Table 1. An estimation of the area usage of a direct sin-
gle precision floating point implementation is about 29,000
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(a) input speech signal
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(b) input noise signal
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(c) filtered signal using double precision floating-point
representation for CWRLS
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(d) filtered signal using fixed-point representation for
CWRLS, integer size = 12, fraction size = 20

Figure 4: Input signal and results of the CWRLS beam-
former.
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slices. So an optimized fixed point implementation can re-
duce the area requirement by 80%. In addition, fixed point
implementation provides better clock cycle time and re-
duce the total number of clock cycle required for the beam-
forming operations which improves the performance of the
beamformer.

An estimation has been made to evaluate the perfor-
mance of the FPGA-based CWRLS beamformer. Assuming
one block of data contains 256 samples under a 16kHz sam-
pling rate, the number of clock cycles required for process-
ing the block of data in the frequency domain is measured
to be 1,031,774. Therefore, given that the period of one
clock cycle is1/(175MHz) = 5.71ns, the FPGA-based
CWRLS beamformer can perform one step of speech en-
hancement in5.89ms, or 43,463 samples per second.

Software version is developed in ANSI C and compiled
to native machine code using the Linux compiler GCC. It
should be noted that the algorithm compiled using GCC has
the optimization feature that is particularly useful with vec-
tor and matrix computations, which is used intensively in
the CWRLS beamformer. A test is performed by providing
290,000 samples to the program and measuring the time re-
quired to finish all the calculations. The test is performed
on a Pentium 4 3.2GHz machine with 1GB memory, and
it takes an average of 36.6 seconds to finish the calcula-
tions. Therefore, the software performance is 290,000/36.6
= 7,293 samples per second. It shows that the FPGA-based
CWRLS beamformer can achieve 6.0 times speedup even
with one instance of subband calculation, when compared
with software running on a 3.2GHz PC.

Table 2 summarizes the results when adding more in-
stances of the filter in an XC4VSX55-12-FF1148 FPGA
chip and shows how the number of CWRLS beamformer
instances affects the speedup. While it is expected the fre-
quency is deteriorated when more cores are instantiated, we
found that the frequency is not decreased even if the uti-
lization rate is 84%. So the speedup would scale linearly
with the number of CWRLS beamformer instances. An
XC4VSX55-12-FF1148 device can pack at most 7 instances
of the CWRLS beamformer, so the speedup will be 41.7
times.

FPGA device XC4VSX55-12

Slices used 5937 (12%)
DSP48 used 72 (14%)
Block RAM used 8 (2%)
Frequency (MHz) 175

Table 1: Summary of the CWRLS beamformer.

Instances Frequency (MHz) Slices DSP Speedup

1 175 12% 14% 6.0
3 175 36% 42% 17.9
5 175 60% 70% 29.8
7 175 84% 98% 41.7

Table 2: Multiple instances of the CWRLS beamformer on
an XC4VSX55-12-FF1148 FPGA.

6 Conclusions

A class of microphone array algorithms are studied,
which involve designing beamforming filter weights by us-
ing a sequence of calibrated signals. In particular, a typical
implementation, namely the subband calibrated weighted
recursive least squares algorithm, is studied in detail. A
hardware implementation of the algorithm on a high-end
FPGA is described. The complete architecture is realized
in hardware and results show that an overall improvement
of 41.7 times over software on a 3.2GHz Pentium 4 Pro-
cessor can be achieved, when an FPGA-based coprocessor
performs the critical part of the algorithm.

Further work includes dynamically reconfiguration of
filter length by using an embedded speech recognizer as
a performance indicator. Also, optimizations for reducing
power and energy consumption, and extensions to exploit
the reconfigurability of FPGAs to support run-time cus-
tomization for adaptive beamforming, are interesting topics
for future research.
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