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ABSTRACT

We present an architecture for a synthesizable datapath-
oriented Field Programmable Gate Array (FPGA) core which
can be used to provide post-fabrication flexibility to a System-
on-Chip (SoC). Our architecture is optimized for bus-based
operations that are common in signal processing and com-
putation intensive applications. It employs a directional
routing architecture, which allows it to be synthesized using
standard ASIC design tools and flows. We also describe a
proof-of-concept layout of our core. It is shown that the pro-
posed architecture is significantly more area efficient than
the best previously reported synthesizable programmable
logic core.
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Design
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1. INTRODUCTION

Recent years have seen an impressive improvement in the
achievable density of integrated circuits. This improvement
has led to an increase in the cost and difficulty of designing
and testing a correctly-functioning chip. Stand-alone FP-
GAs (Field Programmable Gate Arrays) provide one way
of reducing the design cost; however, many designs are not
suitable for FPGAs because of their speed, density or power
requirements. For these types of designs, a fixed-function
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chip, often designed using standard cells and the System-
on-Chip (SoC) methodology [12], may be the only option.

Configurability can be provided by embedding one or more
programmable logic cores into the fixed-function chip. In
such a chip, most of the design is implemented using fixed-
function ASIC (Application Specific Integrated Circuit) gates,
while programmable logic is used sparingly in those parts of
the chip that are likely to change. These changes may be
due to errors in the design or specification, future upgrades,
or to allow for the customization of an integrated circuit for
multiple customers. Embedded programmable logic can also
provide a mechanism to add debug capability [11].

A programmable logic fabric can either be hard or soft. An
ASIC designer using a hard fabric would obtain a layout and
embed it directly into the integrated circuit. One challenge
with this approach is that design tools that allow seamless
integration of fixed and programmable logic are still not ma-
ture. Timing analysis, power distribution, and verification
are difficult when the function to be implemented in the core
is not known.

An alternative technique is recently described which ad-
dresses this concern by shifting the burden from the ASIC
designer to mature standard-cell synthesis tools [14, 15]. In
this technique, an ASIC designer would obtain a synthesiz-
able version of their programmable logic fabric (a soft core)
written in a hardware description language, and would syn-
thesize it along with the rest of the ASIC. The primary
advantage of this technique is that the task of integrating
such cores is far easier than the task of integrating hard
cores. The synthesis tools can be the same ones that are
used to synthesize the fixed (ASIC) portions of the chip. No
modifications to the tools are required, and the flow follows
a standard integrated circuit design flow that designers are
familiar with.

Despite these advantages, there are significant area, speed,
and power penalties when using these cores. Previous archi-
tectures [14, 15] suffer a 6.4 times overhead compared to a
hard programmable logic core. This limits their application
to small circuits such as state machines.

In this paper we present a new architecture that is be-
tween 6 times and 426 times more area efficient than the best
previously reported synthesizable programmable logic core.
Moreover, we show that the new architecture has a density
similar to that of a standard full-custom fine-grained FPGA.
The density improvement is obtained by using a datapath-
style architecture, optimized for performing computations
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Figure 1: Fabric Architecture (configuration elements not shown).

such as those found in signal processing and arithmetic ap-
plications. Although such cores would be less flexible than
their bit-level counterparts, this is less of a concern in an em-
bedded FPGA core than in a stand-alone FPGA since the
context in which the core will be used is known when the
chip is designed. As an example, a programmable logic core
embedded into the datapath of a signal processing ASIC will
certainly be used to implement multiply/accumulate-type
functions, rather than a more general logic circuit. This
allows us to create a core that is optimized for datapath
operations without worrying about how well it can imple-
ment random logic functions. In addition, if buses are used
to connect the programmable logic core and the fixed func-
tion circuitry (as would be expected in a datapath-oriented
circuit), the specific pins on which these buses are mapped,
as well as the width of the bus, are known at the time the
fabric is instantiated, and will not change over the lifetime
of the ASIC. This allows us to further optimize our fabric.
The proposed architecture is similar to both the RaPiD
architecture [3] and datapath-oriented FPGAs [2, 5, 8, 16,
17]. However, the fact that we want to implement our fabric
using existing synthesis tools motivates us to change the ar-
chitecture significantly. Section 2 describes the motivations,
and presents our architecture. Section 3 gives an example
of how an application can be mapped to our architecture.
Section 4 measures the efficiency of our architecture as a
function of various architectural parameters, and Section 5
compares our architecture to the best previous synthesiz-
able programmable logic core, as well as to an ASIC. Sec-
tion 6 describes our proof-of-concept implementation. Sec-
tion 7 compares our approach to that taken in stand-alone

datapath-oriented FPGAs and coarse-grained architectures.
Finally, Section 8 presents concluding remarks and oppor-
tunities for future work.

2. ARCHITECTURE

In this section, we first outline the requirements of an ar-
chitecture for a synthesizable FPGA core, and then describe
our architecture in detail. We actually describe a family of
architectures, where each member of the family is differen-
tiated by various parameters. An SoC designer would select
an architecture from this family based on the amount of pro-
grammable logic required, as well as the number and nature
of the connections to the programmable logic.

2.1 Requirements of a Synthesizable
Architecture

The proposed design methodology requires that the pro-
grammable logic fabric be synthesizable. By this, we mean
the fabric can be synthesized and implemented using exist-
ing synthesis and ASIC design tools with no modifications
to the tools or the CAD flow.

For a fabric to be synthesizable in this way, it must not
contain combinational loops. Standard synthesis tools, tim-
ing analysis tools, and power estimation tools are optimized
for circuits without combinational loops. Although circuits
with such loops can be synthesized, this usually requires the
designer to manually “break” the loops by identifying some
false paths. This requires considerably more understanding
about the internals of the core that a typical ASIC designer
would have. Note that a standard unconfigured FPGA con-
tains many combinational loops. A designer will rarely con-



figure the FPGA to implement combinational loops, but be-
fore configuration, such loops exist.

On the other hand, our methodology provides a unique
opportunity for optimization. When designing a hard layout
for an FPGA, layout effort is reduced by dividing the design
into tiles, where each tile is identical. In our case, the tiles
are synthesized and laid out automatically by CAD tools;
thus, it is no longer critical that each tile is identical.

One important aspect of our work is that we are focus-
ing on small user circuits. Large circuits would typically be
implemented using a hard-programmable logic core. An ex-
ample circuit might be a small debug controller, as will be
described later in this paper.

2.2  Our Architecture

Figure 1 shows our architecture. The fabric contains D
identical wordblocks, each containing N identical bitblocks.
Unlike a fine-grained FPGA, the bitblocks within a word-
block are all controlled by the same set of control bits. This
means all bitblocks within a wordblock perform the same
function. We will consider the implication of this feature on
density in Section 4.

As shown in Figure 2, each bitblock contains two lookup-
tables, several multiplexers, and a flip-flop. A single word-
block can implement an N bit adder/subtractor, an N-bit
wide three-input multiplexer, any other three-input logic
function, or some five-input functions. Two control inputs
k1 and k2 (from the Control Block, to be described below)
allow for efficient implementation of multiplexers and other
datapath functions that require a control input. The same
two control lines are driven to all bitblocks in a wordblock.
The select lines of the three multiplexers in Figure 2 as well
as the function lines of the two lookup-tables are driven
by configuration bits. In total, 35 configuration bits are
required per bitblock; as described above, these bits are
shared between all bitblocks in a wordblock. The wordblock
also contains a programmable shifter, which can pass data
through unchanged, or shift the word one bit to the right
(signed or unsigned shift) or one bit to the left; the state of
the shift block is controlled by two configuration bits.

Each wordblock receives up to three inputs from either the
M primary bus inputs, the F' feedback paths, the C constant
registers, or any of the outputs of wordblocks to the left. The
control lines for the input selection multiplexers are driven
by configuration bits. Note that buses are switched as a unit;
this improves density, since one set of configuration bits can
be shared among all bits. However, it also reduces flexibility,
since it is not possible to select part of one bus and part of
another bus (this functionality can be implemented within
a wordblock by careful use of a “mask” in one of the C
constant registers). The R output buses of the architecture
can be selected from the same set of M + F + C buses or
from the output of any of the D wordblocks. The same
signals (except the C' constants) can be fed back, through
a flip-flop, to all wordblocks; this provides a mechanism to
connect wordblock outputs to the inputs of wordblocks to
the left and also supports an efficient way to delay signals
by one clock cycle without using a wordblock.

Wordblocks can efficiently implement combinational func-
tions including adders and multiplexers, and can perform
masking operations in conjunction with one or more of the
constant registers. However, they cannot efficiently imple-
ment multipliers. Since multipliers are an important part

control control

k1 Cin k2
I
4-LUT s
Rq} <
54
4-LUT
= T
cfg[1..0] ABC cfal33.2]  Cout cfgl34]

Figure 2: Bitblock (status flags not shown).

of our target applications, selected wordblocks in the fabric
are replaced with embedded multipliers. Each embedded
multiplier has two N-bit inputs which are selected from the
M + C + F + i (where 4 is the number of wordblocks to the
left of the multiplier) buses using routing multiplexers. The
multiplier produces two output buses, one for the high order
result and one for the low order result. These outputs can
be selected by all subsequent routing multiplexers including
the output and feedback multiplexers. We denote the num-
ber of multipliers as A, and assume each multiplier displaces
one wordblock (so, the number of wordblocks is D — A).

Although our architecture is aimed at datapath-oriented
applications, a small amount of control logic is sometimes
needed to control the datapath. Such logic can be imple-
mented in the Control Block. This block contains fine-
grained product-term based programmable logic resources,
and is similar to the architecture described in [15]. The fab-
ric contains P product-term blocks, each with 9 inputs, 10
product terms, and 3 outputs (this was shown to work well
in [15]). The control block also contains registers to support
state machines. Inputs to the Control Block are selected
from a number of status signals generated throughout the
datapath. Each wordblock generates a carry-out, an over-
flow, an MSB, an LSB, and a zero flag; each feedback path
generates the same flags, with the exception of the carry-
out. This large number of status bits are multiplexed into a
small number of inputs using the Status Multiplexer, which
is controlled by configuration bits. The exact number of
these status bits that can be provided to the Control Block
depends on the size of the Control Block. Similarly, the
Control Block generates a number of outputs. These out-
puts can be provided to various control lines in the fabric
using the Control Multiplexer; for each control line in the
fabric, any of the Control Block outputs or the constants ‘0’
or ‘1’ can be selected.

The parameters used to describe the architecture are sum-
marized in Table 1.

3. EXAMPLE MAPPING

To demonstrate how this architecture can be used to im-
plement a circuit, we focus on a single example. The exam-
ple is a common debugging operation [11]; the circuit mon-
itors two buses, and counts the number of times a certain
mask (composed of 1’s, 0’s and “don’t care” bits) matches
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Figure 3: Example Mapping.

each bus, as well as the number of times both buses match
the mask at the same time.

Figure 3 illustrates how the application can be imple-
mented. Two constant registers are used to hold the mask
value (two registers are required so that “don’t care” bits can
be specified). One wordblock combines these two mask val-
ues and the first input bus to produce a 0 if the bit matches
(or is a “don’t care”) or a 1 otherwise. A second word-
block performs the same function on the second bus. Both
wordblocks provide their zero flag (indicating a match has
occurred) to the Control Block; the Control Block provides
this signal to the carry-in signals of two adders (each im-
plemented in a wordblock). The Control Block also pro-
vides the AND of the two zero flags to a third adder (imple-
mented in another wordblock). Each of the three accumu-
lated counts are stored in the feedback registers; these counts
are fed back to the input signals of the adders. The reset
control lines for the feedback registers are also controlled
by the Control Block. Finally, the three adder outputs are
connected to the outputs of the fabric.

4. PARAMETER OPTIMIZATION

In this section, we first determine the impact of the pa-
rameters in Table 1 on the area and delay of the fabric.

Table 2 shows a breakdown of the area of a fabric with
N=16, D=16, M=3, R=2, F'=3, C=2, A=4, and P=4. The
various components were synthesized using Synopsys Design
Compiler, and the cell area predicted by Synopsys was re-
ported. Configuration circuits, clock circuits, and all other
essential parts of the core were included in the synthesiz-
able model. Although it would be more accurate to perform
place and route on the Synopsys-generated netlist and mea-
sure the chip area directly, previous results have shown that
the Synopsys area results have a good correlation to the final
chip area results [14]. A 130nm process was assumed.

l Module [ Area in pm? [ Percentage ‘
B Wordblocks 86, 251 23.8 %
+ | Multipliers 45, 236 125 %
2 | Config. Bits 24, 323 6.7 %
« | Feedback Regs 2, 322 0.6 %
A | Routing Muxes 86, 251 332 %

Total Datapath 120, 460 76.7 %
Status Multiplexer 18, 520 5.1%
Control Multiplexer 14, 603 4.0%
Control Block 51, 418 14.2%
Total [ 363,136 [ 100.0%

Table 2: Area Breakdown.

As one can see, most of the area is used to implement the
datapath portion of the fabric. Within the datapath, the
largest component of the area is due to the routing multi-
plexers. The four multipliers and 12 wordblocks also con-
sume a significant amount of area. The configuration bits
within the datapath consumes 6.7% of the entire fabric.

Figure 4(a) shows the impact of N and D on area. In this
experiment, M=3, R=2, F=3, C=2, A=4, and P=4. As
the graph shows, the area is roughly proportional to both
D and N; increasing D increases the number of wordblocks
and corresponding routing multiplexers, while increasing N
increases the sizes of these blocks.

The impact on area of the number of multipliers, A, is
shown in Figure 4(b). All other parameters are as before,
with N=16 and D=32. Intuitively, as A increases, the
area goes up. This is despite the fact that the area of the
32-bit multiplier is roughly the same as the area of a 32-
bit wordblock (including the associated routing multiplexers
and configuration bits). The reason that the area goes up as
A increases is that the multiplier produces two bus outputs
(a wordblock produces one). This increases the size of the
routing multiplexers in all downstream wordblocks, as well
as the output multiplexers and feedback multiplexers. The
graph shows that the increase from A =0 to A =1 is larger
than the increase from A = 1 to A = 2. This is because if
there is only one multiplier, it is placed in the left-most slot.
This increases the size of all subsequent routing multiplex-
ers. When a second multiplier is added, it is placed in the
middle of the fabric, so only half of the routing multiplexers
are increased (those to the right of the new multiplier).

Figure 5(a) shows the impact of P on the area of the
fabric. As one can see, the number of product-term blocks
in the control block has a significant effect on the size of the
overall architecture.

We also measured the impact of M, R, C, and F'. Each
of these parameters had a linear effect on area. Increasing
M from 1 to 8 increased the area by 15%, increasing R from
1 to 8 increased the area by 7.8%, increasing F' from 0 to
6 increased the area by 25%, and increasing C' from 0 to
8 increased the area by 17%. Parameter R (the number of
output buses) has the smallest effect on area, since an in-
crease in R does not imply an increase in the size of any of
the routing multiplexers. For all other parameters, as the
parameter is increased, additional buses are created; these
buses are supplied to all routing multiplexers, making them
larger. Parameter F' has the largest impact since each feed-
back register is associated with three status bits and one
control bit.

In our architecture, the same set of 35 configuration bits
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are shared among all bitblocks in a wordblock. To inves-
tigate the implication of this feature on density, we varied
the number of configuration bit sets per wordblock from 1
(the baseline architecture) to N, in which every bitblock is
controlled by a separate set of 35 configuration bits. The
impact on area is shown in Figure 5(b) for two values of
N (all other parameters are the same as before). As the
graph shows, the more flexible architecture, the more area
is required (because of the extra configuration bits). For
N = 16, an architecture in which each bitblock has its own
configuration set is 60% larger than an architecture in which
all bitblocks within a wordblock share a configuration set.
The maximum clock frequency at which the fabric can
run depends on the configuration implemented in the fab-
ric. Table 3 shows post-synthesis, pre-place and route delay
estimates for various paths within the fabric. The delay
through the wordblock is the delay from the output of the
register in one wordblock to the input of the register in the
next wordblock. This quantity is independent of N, and de-
pends very slightly on M, C, and F, as well as the position

Delay through one wordblock 3.25ns
Delay through one multiplier (8 bits) 5.39ns
Delay through one multiplier (16 bits) 8.50ns
Delay through carry chain (8 bits) 8.71ns
Delay through carry chain (16 bits) 14.93ns
Delay through 24 wordblocks and 8 multipliers 178ns

Table 3: Delay Estimates.

of the wordblock in the array (since these parameters deter-
mine the size of the routing multiplexer used to select inputs
for the second wordblock). On the other hand, the delay of
the multiplier goes up as N increases. Measurements of the
maximum carry chain delay within one wordblock are also
given in the table (from the carry-in of the least significant
bit to the carry-out of the most significant bit). The last
entry in the table shows the delay of a combinational path
that passes through all wordblocks in a fabric with D=32
and A=8; clearly, most applications would not configure the
fabric to have such a long critical path.



S. MAPPING RESULTS

In this section, we use benchmark circuits to compare our
architecture to a fine-grained synthesizable programmable
logic core [15]. We first describe our benchmark circuits.
We then present mapping results, first assuming that the
architecture is tailored for each benchmark, and then as-
suming the more realistic case in which the fabric is not
tuned for each benchmark.

5.1 Benchmark Circuits

As described earlier, we are focusing on user circuits. An
example is the debug controller described in Section 3. Such
circuits typically contain a single datapath controlled by a
small controller; circuits with multiple intersecting datap-
aths are likely too large to be implemented using a synthe-
sizable core, and thus, we do not consider such circuits in
this section.

We used eight benchmark circuits. Three of the bench-
marks, bfly, dscg and fir4 were used in [6]. The bfly bench-
mark performs the computation z = y 4+ = * w where the
inputs and output are complex numbers; this is commonly
used within a Fast Fourier Transform computation. The
dscg circuit is the datapath of a digital sine-cosine genera-
tor. The fir4 circuit is a 4-tap finite impulse response filter.
The other four circuits were constructed specifically for this
work: The dotv3 benchmark computes the dot vector prod-
uct of two inputs. The eged circuit implements an extended
binary greatest common divisor algorithm [10]. The momul
benchmark is a Montgomery Multiplier [10]. The median
circuit is a median filter that accepts streaming data and
returns the median (actually second-largest) of the last four
entries. Finally, the debug! benchmark is the debugging cir-
cuit considered in Section 3. All benchmarks assume 8 bit
operands, except median and debugl which assume 16 bit
operands. We have specifically chosen these circuits since
they are small, and support the type of application we would
expect to implement on a synthesizable programmable logic
core. Large user circuits would be typically implemented
using a hard programmable logic core.

5.2 Optimized Parameters

We first compare our architecture to the best previous
synthesizable architecture [15] and to a non-programmable
ASIC implementation of each circuit. This will give an
upper-bound of the efficiency of our architecture if tuned
properly.

To map each benchmark to our architecture, the bench-
mark was first split into datapath and control sections. The
datapath portion of the circuit was mapped (by hand) to
wordblocks, and appropriate values of D, N, M, R, D, A,
F, and C were chosen. The control section was mapped to
product-term blocks, using PLAmap [1]. Using the num-
ber of product-term blocks required by PLAmap to imple-
ment the circuit, as well as the datapath parameters de-
scribed above, a custom-built tool was used to generate an
appropriately-sized fabric. This fabric was then synthesized
using Synopsys Design Compiler, and the cell area predicted
by Synopsys was reported. Again, a 130nm CMOS process
was assumed. The results are shown in Column 10 of Ta-
ble 4.

For comparison, we also show the area that would be re-
quired to implement the same circuit using the fine-grained

synthesizable fabric from [15] in Column 11. These mea-
surements were obtained using the architectures and tools
described in [15]. We were unable to compare our architec-
ture to the architecture described in [14], since that architec-
ture only supports combinational circuits, and most of our
benchmarks are sequential. However [15] shows that their
architecture is significantly more dense than that in [14],
even for combinational circuits. Column 12 shows the area
required by the benchmark circuit if synthesized directly in
standard cells (in which case there is no programmability).

Column 13 shows the ratio of the area required to imple-
ment each benchmark using the fine-grained fabric to the
area required to implement the same benchmark in our ar-
chitecture. As the table shows, there are two categories of
circuits. Circuits bfly, dotv3, dscg and fir4 all show ratios of
between 1610 and 1940. In other words, our architecture is
1610 times to 1940 times more area-efficient than the fine-
grained fabric. The remaining circuits show more modest
ratios between 14 and 75.

These results are dramatic. First consider those bench-
marks with ratios between 14 and 75. Given that, for each
circuit, we are creating a fabric in which configuration bits
are shared between either 8 or 16 bits, we would expect to see
a ratio of no larger than 8 or 16. The reason our ratios are
larger than this has to do with the inefficiencies of the fine-
grained architecture when implementing very large circuits.
The architecture in [15] contains many routing multiplex-
ers; the size of these multiplexers and the number of these
multiplexers both grow linearly with the size of the fabric.
For the small circuits for which the previous architecture
was designed, these multiplexers are small. However, when
the fabric is scaled large enough to implement our bench-
mark circuits, these multiplexers become unwieldy, causing
the area to grow significantly.

This does not explain the four benchmarks that have ra-
tios greater than 1600. These benchmarks all contain a sig-
nificant number of multipliers. In our architecture, these
multipliers are implemented as a hard embedded block (as in
many commercial stand-alone FPGAs). On the other hand,
the fine-grained architecture does not contain these embed-
ded blocks, meaning the multipliers must be implemented
using the normal logic resources. This is aggravated by the
fact that product-term based architectures, such as [15] are
notoriously bad at implementing XOR functions, which are
common in multipliers.

Column 14 shows the ratio of the area required to im-
plement each benchmark circuit in our fabric to the area re-
quired to implement the same benchmark circuit using fixed
ASIC cells (with no programmability). This measure is the
overhead resulting from configurability using our architec-
ture. As the table shows, for the circuits with a significant
number of embedded multipliers, this ratio is between 5 and
8. For circuits without a significant number of embedded
multipliers, this number is between 25 and 117. It is in-
teresting that these larger numbers are of the same order
of magnitude as the ratio of an FPGA implementation to
an ASIC implementation [7]. In other words, the overhead
due to configurability in our architecture is similar to the
overhead inherent in a hand-designed stand-alone FPGA.
This is a surprising result; it shows that synthesizable cores
can provide the density that designers currently accept from
non-synthesized programmable logic devices.



Bench- Fabric Parameters Datapath | Fined-Grain | ASIC || Fine-Grain/ | Datapath/
mark D [ N [ M [ R [ C [ F [ A [ P (ours) [15] Datapath ASIC
bily 8 | 8| 61 ]0[5]4]0] 68190 | 132,339,335 | 9,300 1940 7.33
dotv3 51 8| 6|]1|0[2]3]0 34,119 65,534,780 6,575 1921 5.19
dscg 8|83 |2/0l2|4]1 72,178 | 116,271,968 | 9,473 1611 7.62
fird 11| 8 1]114|0]01]O0 76,213 130,971,120 9843 1718 7.74
eged 27 | 8 2 411191027 1,225,231 22,776,474 10,420 18.6 117
momul | 13 | 8 7 21016 |2 8 294,135 11,448,589 7,097 38.9 41
median | 8 |16 | 1 |1 ][0 |4 |0]| 2 142,172 10,733,962 4,420 75.5 32
debugl | 5 |16 2 |3|2[3]|0| 1| 87265 1,302,928 | 3,484 14.9 25

Table 4: Area results when the fabric is optimized for each benchmark circuit.

5.3 Derived Parameters

When gathering the results in Section 5.2 we chose all fab-
ric parameters independently for each circuit. This unfairly
biases the results in our favour. One of the drawbacks of
partitioning the fabric between control and datapath is that
different user circuits require different amounts of control
and datapath; since we do not know what will be imple-
mented in the fabric when the ASIC is designed, choosing
the amount of each type of fabric is difficult. If the partition
is not chosen carefully, either control resources or datapath
resources will be wasted. This is not a problem with fine-
grained architectures, since the fine-grained fabric can be
used to build either control or datapath structures. In this
section, we address this issue by fixing this parameter (as
well as other parameters) as a function of the fabric size.

We repeated the experiments in Section 5.2. We choose
values of D, N, M, and R independently for each benchmark
circuit. This is reasonable; when including a fabric in an
ASIC, the bit-width, the number of input and output buses,
and the desired fabric size is known. Unlike the previous ex-
periments, however, we calculated the remaining parameters
as a function of D. If the resulting architecture has more
constant registers, feedback paths, multipliers, or product
term blocks than are needed by the benchmark circuit, then
the extra resources are wasted. On the other hand, if the
fabric does not contain enough of any of these resources, the
fabric size (D) is increased until the benchmark circuit can
be implemented.

Table 5 shows the results, using the same columns as in
Table 4. The size of the fine-grained fabric and the ASIC
implementation are copied into Table 5 for convenience. In
all cases, we compute C = [2], F = [2], A = [2], and
P = (%-\ Although these may not be the optimum ratios,
we do not have enough benchmark circuits to determine op-
timum ratios for each parameter. These ratios were selected
because they appear “reasonable” based on our experience
(for example, since each product term block has three out-
puts, setting P = [%] means that, on average, one select
line per wordblock can be generated). If additional experi-
ments were conducted, and the optimum ratios found, they
would tend to improve the results in this section.

As the results in Table 5 show, in general, the area re-
quired to implement each benchmark circuit on our fabric
has increased, due to the benchmark circuits not exactly
matching the generated architecture. The ratio of the area
required to implement each circuit in the fine-grained archi-
tecture of [15] to the area required to implement the same
benchmark in our fabric now ranges from 10.9 to 426, while

the ratio of the area required to implement each circuit in
our fabric to the area required to implement the same circuit
in an ASIC ranges from 31.2 to 363.

6. PROOF-OF-CONCEPT LAYOUT

As a proof-of-concept, we performed place and route on
the datapath portion of our fabric with D=12, N=8, M =7,
R=2, F=6, A=0, and C=0. The Verilog description of the
fabric was synthesized with Synopsys Design Compiler, tar-
geting the STMicroelectronics 90nm, 7-layer metal process
using the STMicroelectronics CORE90OGPSVT standard cell
library. The netlist was flattened into a single level of hierar-
chy before layout. The pre-layout netlist contained a total
gate area of 300098 pm?. The cell placement, cell sizing
and repeater insertion was performed by Cadence SoC En-
counter. Detailed wire routing was performed using Cadence
NanoRoute and was completed with no violations. The to-
tal gate area after place and route was 336402 pm?. The
placement region set to approximately 625 um x 625 um,
resulting in a gate density of 86.1%.

7. COMPARISON TO PREVIOUS WORK

Our architecture inherits ideas from previous work on fine-
grained synthesizable fabric, datapath-oriented FPGAs and
coarse-grained reconfigurable architectures, such as RaPiD.
This section compares our architecture to several previous
studies.

7.1 Fine-Grained Synthesizable Fabric

We have compared our architecture to the best synthe-
sizable architecture in Section 5.2 using a set of bench-
marking circuits. The architecture proposed in [15] is fine-
grained and the configurability is provided by programmable
logic arrays (PLA). For the circuits which contain significant
number of multipliers, our architecture is 1610 times to 1940
times more area-efficient than the fine-grained fabric. This
is because the multiplier in our architecture are implemented
as a hard embedded block while the fine-grained architec-
ture does not contain these blocks. It means the multipliers
must be implemented using normal logic resources which
contributes large area consumption.

For some other circuits which do not have large number
of multipliers, the area ratio is between 14 and 75. We ob-
serve that the architecture in [15] is not efficient when im-
plementing large circuits. The architecture in [15] contains
many routing multiplexers. Both the size of these multiplex-
ers and the number of multiplexers grow linearly with the



Benchmark | Fabric Parameters Computed Datapath | Fine-Grain | ASIC || Fine-Grain/ | Datapath/
D|N|M| R |C|F|A|P (ours) [15] Datapath ASIC
bfly 16| 8 | 6 1 4|1 81 4|6 332,091 | 132,339,335 | 9,300 399 35.7
dotv3 9|1 8|6 1 315133 225,518 65,534,780 | 6,575 291 34.3
dscg 16| 8 | 3 2 4|1 811 4|6 325,029 | 116,271,968 | 9,473 358 34.3
fir4 16 | 8 1 1 4 8 4 6 307,154 130,971,120 | 9843 426 31.2
eged 70| 8 | 2 4 |18 |35 | 18 | 24 | 3,778,611 | 22,776,474 | 10,420 6.02 363
momul 221 8 | 7 2 6 |11 | 6 | 8 486,316 11,448,589 | 7,097 23.5 68.5
median 9 |16 1 1 3151313 194,654 10,733,963 | 4,420 55.1 44
debugl 6 | 16 | 2 3 2131212 119,286 1,302,928 3,484 10.9 34

Table 5: Area results when low-level parameters are computed.

Figure 6: Proof-of-Concept Layout.

size of fabric. When the fabric is scaled large enough to im-
plement the given benchmarking circuit, these multiplexers
become unwieldy and it causes the area to grow significantly.

7.2 Datapath-Oriented FPGAs

Several previous studies have considered datapath-oriented
FPGAs [2, 5, 8, 16, 17]. In these architectures, configuration
bits are shared among multiple lookup-tables and multiple
routing switches.

In these previous works, it is assumed that the FPGA is
to be laid out by hand or using a custom layout tool, and
thus, no attempt is made to remove combinational loops
in the unprogrammed fabric. This is a key requirement of
a synthesizable architecture. Although these architectures
can be synthesized (as in [8]), the combinational loops will
require designers to “break” these loops by declaring false
paths; this increases the difficulty of including these fabrics
in a large SoC.

A second difference between these datapath FPGAs and
our architecture is that these previous architectures have

been optimized assuming that the bus width of the target
application and the pin assignments of the buses are not
known when the fabric is designed. This limits the amount
of optimization possible; for example, in [16], it is found
that the number of blocks sharing a set of configuration
bits should be no more than four. In our context, the bus
width and pin assignments are determined when the ASIC
is designed, and will not change over the lifetime of the chip.
This allows us to share a set of configuration bits across all
datapath bits in a word.

7.3 Coarse-Grained Fabrics

Coarse-grained architectures, in which lookup-tables are
replaced by ALUs, have also been described in [3, 4, 9, 13].
Of these, the RaPiD architecture [13] was specifically de-
signed for use in an SoC. RaPid contains a linear array of
dedicated functional units connected using dedicated buses.
Control logic is implemented using a separate module that
provides control signals to the functional units.

RaPiD is intended to support fairly large applications such



as image and signal processing, and may be best imple-
mented as a hard programmable logic core. It would be
possible to “scale down” RaPiD and use it as a synthesiz-
able core. However, like the datapath FPGAs described in
the previous section, the unprogrammed RaPiD fabric con-
tains combinational loops. Our architecture eliminates these
using a directional routing network.

Another difference between RaPiD and our architecture is
that RaPiD (as well as many coarse-grained architectures)
contains a heterogeneous mix of fixed-function datapath ele-
ments rather than configurable wordblocks. When creating
a RaPiD fabric, one must choose how many of each type
of functional unit is to be included in the fabric. However,
once that decision is made, the location of each functional
unit does not matter, since buses can be routed from any
functional unit to any other functional unit. In our archi-
tecture, however, the routing network requires less area but
is less flexible, so it is less likely that a pre-positioned set
of fixed functional units could be connected to implement
a target application. Thus, we provide a general-purpose
wordblock that can be used to implement many functions.
The only exceptions to this rule are the embedded multi-
plier blocks; we distribute these evenly across the fabric to
maximize the likelihood that applications can be mapped
successfully.

8. CONCLUSION

We have presented an architecture for a datapath-oriented
synthesizable FPGA core which can be used to provide post-
fabrication flexibility to an SoC. The proposed architec-
ture features with sharing configuration bits, carry chains,
directional routing architecture and embedded multipliers.
Compared to the previous best synthesizable embedded pro-
grammable logic core, our architecture is between 6 times
and 426 times more area efficient, depending on the number
of embedded multipliers in the fabric. This opens the use
of synthesizable embedded programmable logic cores to sig-
nificantly larger applications, and provides a configuration
overhead similar to that of standard hand-designed FPGAs.
Current and future work includes automating the design and
optimization of synthesizable embedded FPGA fabrics and
the associated design mapping tools, and the support of
complex hardwired elements such as floating-point opera-
tors in such fabrics.
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