
Arbitrary Function Approximation in HDLs with
Application to the N-body Problem

C.H. Ho1, K.H. Tsoi1, H.C. Yeung1, Y.M. Lam1, K.H. Lee1, P.H.W. Leong1,
R. Ludewig2, P. Zipf2, A.G. Ortiz2, M. Glesner2

1Department of Computer Science and Engineering
The Chinese University of Hong Kong, Shatin NT HK.

{chho2,khtsoi,hcyeung,ymlam,khlee,phwl}@cse.cuhk.edu.hk
and

2Institute of Microelectronic Systems
Darmstadt University of Technology, Germany.

{ludewig,zipf,agarcia,glesner}@mes.tu-darmstadt.de

Abstract

A module generator is described that allows for the gen-
eration of synthesizable VHDL modules which implement
arbitrary functions in fixed point precision using the Sym-
metric Table Addition Method (STAM). This module gen-
erator was interfaced to a high level synthesis tool “fly”
which automatically generates fully-pipelined circuits from
a Perl-like language. The resulting system was applied to
the N-body problem and results are presented. It was found
that a function generator module is a very useful addition
to a hardware description language.

1 Introduction

The field of reconfigurable computing has benefited
greatly from the development of efficient hardware descrip-
tion languages as well as improved field programmable gate
array (FPGA) device capacity in recent years. These two
developments have greatly improved our ability to develop
FPGA based hardware accelerators for computing applica-
tions. A large number of computing applications require the
use of real arithmetic, and FPGA designers use both fixed
and floating point representations in such systems.

In software based systems, libraries of commonly used
mathematical functions are available, and programmers
need not be familiar with the details of their implementa-
tion. In hardware design, although there are libraries avail-
able to perform specialized functions, they are normally re-
stricted to a small fixed set of functions e.g. implementa-

tions of the CORDIC algorithm.

In this paper, an efficient table lookup generation system
for supplementing a hardware description language (HDL)
is proposed. In particular, an implementation of the Sym-
metric Table Addition Method (STAM) which acts as a
module generator for an arbitrary twice differentiable func-
tion is described. This module generator was integrated
with our high level synthesis tool “fly” [3] to produce a very
flexible design environment which allows the specification
of arbitrary functions in a high level manner. The result-
ing environment was used to develop a coprocessor for the
computation of the N-body problem.

The N-body problem is computationally intensive and
involves a large number of floating point operations. This
together with the fact that relatively low precision is re-
quired makes it a good candidate for hardware acceleration
using FPGAs. Using a module generator provides further
advantages by allowing the designed system to be adapted
for different application or different algorithms with very
little effort. The design productivity of the module gener-
ator approach was much higher than that which could be
expected from a VHDL designer.

The rest of the paper is organized as follows. In Sec-
tion 2, an introduction to the N-body problem is given and
the need for a function approximation justified. In Sec-
tion 3, the STAM table lookup algorithm is described and
extensions made to VHDL to allow for the simple inter-
facing of the STAM code detailed. An example which de-
scribes the application of the resulting STAM system to the
implementation of the floating point function f(x) = x

−3
2

is also given. Section 4 describes the implementation of

the N-body problem. Results obtained from this implemen-
tation are described in Section 5 and finally, conclusions are
drawn in Section 6.

2 The N-body Problem

A wide range of physical systems can be studied by mod-
eling them as an N-Body problem and are used in fields of
science such as astrophysics and molecular biology. In the
N-body problem, particles are modeled as points in space.
The potential of the system can be expressed as a function of
the properties and positions of all particles in the system and
the force exerted on a particle is the first derivative of this
potential with respect to the position of the particle. Dif-
ferent applications of the N-body problem share the same
basic structure but differ in the physical law that governs
the force between particles and the exact equation for cal-
culating the potential and force depends on the application.
By integrating the force acting on a particle, its position can
be computed as a function of time.

There is no known analytic solution for the N-body prob-
lem forN ≥ 3 so N-Body problems are solved numerically
in practice via simulation. At each time step, forces exerted
on each particle are computed and the positions of the par-
ticles are updated at the end of the time step by integrating
all forces acting on all particles. In N-body simulations,
most computation time is spent on force calculation and the
number of interactions between particles grows as O(n2),
where n is the number of particles. For large n, this calcu-
lation becomes very expensive and poses a limit on the size
of system that can be realistically studied.

Since the force calculation part consumes most of the
execution time, and at the same time has a rather simple al-
gorithm, it is a good candidate for hardware acceleration. In
fact, this has been done in many systems, usually employing
a heterogeneous architecture consisting of a general purpose
host computer and a special purpose hardware. The special
purpose hardware handles the force calculation while the
host computer handles all other computations. Most notable
of those is the GRAPE (Gravitational Pipeline) computer
for the gravitational N-body problem [5].

In this work, an FPGA based co-processor for evaluat-
ing gravitational forces in N-body simulations was built us-
ing a module generator approach. The architecture of the
co-processor is similar to the GRAPE-1 system. GRAPE-
1 is the first in a series of specialized processors evaluat-
ing gravitational forces or acceleration in a gravitational N-
body simulation. Equation 1, 2, 3 shows the force evalua-
tion in this system.

ai =
N∑

j=1

(aij) (1)

aij = (xj − xi)(r
2
ij + ε2)−3/2 (2)

r2
ij = (xi − xj)2 + (yi − yj)2 + (zi − zj)2 (3)

The equations are the same as that implemented in the
GRAPE-1 system. ai is the gravitational acceleration at the
position of particle i, xi is the position of vector particle i,
rij is the distance between particles i and j and ε is the arti-
ficial potential softening used to suppress the divergence of
the force at rij → 0. Implementation of the above equations
is reasonably straightforward using multipliers and adders,
with the exception of a function to compute x−3/2. The
implementation of arbitrary functions is a tedious task and
hardware description languages such as VHDL do not offer
support to aid their implementation. In the following sec-
tions, we describe the STAM table lookup algorithm which
can approximate any twice differentiable functions to a de-
sired accuracy and then describe its integration into VHDL.

3 Table Lookup Approximations

3.1 Taylor Expansion

If a function f(x) has continuous derivatives up to (n+
1)th order, it can be expanded using a Taylor series:

f(x) =
n∑

i=0

f (i)(a)(x − a)i

i!
+Rn (4)

where

Rn =

∫ x

a

f (n+1)(u)
(x− u)n

n!
du

=
f (n+a)(ξ)(x − a)n+1

(n+ 1)!
for a < ξ < x

To reduce the required hardware resources and/or com-
putation power, only the first few terms in the Taylor series
can be used to approximate the function.

3.2 Symmetric Bipartite Table Method (SBTM)

The SBTM uses the first two terms of the Taylor series
to approximate a function f(x) as f̃(x) [6]. In the SBTM,
two lookup tables are constructed and the precision of the
output is maximized.

Assume that the n-bit input, x, of the function to be ap-
proximated has the range [0, 1). It is first partitioned into 3
segments as shown in Fig 1 where x = x0 + x1 + x2.

The ranges of xi are:

0 ≤ x0 ≤ 1− 2−n0

0 ≤ x1 ≤ 2−n0 − 2−n0−n1

0 ≤ x2 ≤ 2−n0−n1 − 2−n0−n1−n2

2

X 0

n 1

X 1 X 2

n 0 n 2

n

0.

2−1 −n02
−n0− n1 − n1− n20−n

1 2 2

Figure 1. Input partition of SBTM.

Two lookup tables which return the values a0 and a1 are
then constructed. The sum of these two values will be an
approximation to the function. We first select mid points in
the ranges of x1 and x2:

δ1 = (2−n0 − 2−n0−n1)/2

δ2 = (2−n0−n1 − 2−n0−n1−n2)/2

(5)

Let a = x0 + x1 + δ2 and use the first two terms of the
Taylor Expansion:

f(x) = f(x0 + x1 + x2)

≈ f(x0 + x1 + δ2) + f ′(x0 + δ1 + δ2)(x2 − δ2)

= a0(x0, x1) + a1(x0, x2)

= f̃(x) (6)

Not all bits from a1 are required to be in the table as the
carefully selected δ2 results in a large number of leading 0s
or 1s in the a1 table. Since δ2 is located in the center of x2’s
range, then

|x2 − δ2| ≤
xmax

2
⇒ |x2 − δ2| < 2−n0−n1−1 (7)

The upper bound of a1 is

|a1(x0, x2)| = |f ′(x0 + δ1 + δ2)(x2 − δ2)|
< |f ′(ξ1)|2−n0−n1−1 (8)

where

ξi ∈ [0, 1)|(∀x ∈ [0, 1)|f (i)(ξi) > f (i)(x))

Note that even though the domain of f(x) is [0, 1), the
range of a0 = f ′(x)(x− a) may include negative numbers.
From equation (8), one can calculate the number of leading
0s (or leading 1s for a negative number) to be

n0 + n1 + 1 + log2(|f(ξ0)/f ′(ξ1)|). (9)

To maximize the precision of the algorithm and optimize
the resource utilization, errors in approximation must be

x
0
 x
1
 x
2

n

Table

a
0
(x
0
, x
1
)

Table

a
1
(x
0
, x
2
)

XOR

n
0
 n
1
 n
2
 - 1

Adder

XOR
 c

sign
(a
1
)

f(x)

p

p
0

p
1

p
1
-1

n
2
 - 1

~

Figure 2. Structure of optimized SBTM.

controlled. In the SBTM algorithm [6], the following in-
equality ensures that the error will be less than the LSB of
the result:

|f ′′(ξ2)|2−2n0−n1−2(1 + 2−n1) + 2−pf−g−1 ≤ 2−pf−1

(10)
The first term is the error contributed by the Taylor ap-

proximation and the rest are from rounding intermediate
results. This inequality limits the choice of partition size
and required guard bits. If the configuration parameters of
the algorithm are selected according to the following con-
straints, inequality (10) will be satisfied.

2n0 + n1 ≤ pf + log2(f ′′(ξ2))

g ≤ 2 (11)

The size of table a1 is 2n0+n2 × (pf + g) bits. This size
can be reduced by half by exploiting symmetry in the table.
First, we notice that 2δ2 − x2 equals the 1’s complement of
x2. Then we notice that a1(x0, 2δ2−x2) equals the bitwise
inversion of a1(x0, x2). Replacing x2 by 2δ2 − x2 in a1 =
f ′(x0 + δ1 + δ2)(x2 − δ2) gives the result. The resulting
implementation is shown in Fig 2.

The size of the table can be further reduced by elimi-
nating the leading zeros or ones according to equation (9).
Since all values in table a0 have the same sign, the sign bit
of all values can be moved outside the table.

3

2−1 −n02
−n0− n1

X 0

n 1

X 1

n 0

1 2

0. X m−1

n m−1
n

2
− n10−n − nm

Figure 3. Input partition of STAM.

3.3 Symmetric Table Addition Method (STAM)

The logic in the SBTM is very simple and only two ta-
bles are required. The STAM algorithm uses more tables
of smaller size to significantly reduce the overall memory
required [7].

As shown in Fig 3, the n-bit input is partitioned into m
segments instead of 3. The input is now x =

∑m−1
i=0 xi.

The ranges of xi become:

0 ≤ x0 ≤ 1− 2−n0

0 ≤ xi ≤ 2−pi−1 − 2−pi

(12)

where pi =
∑i
k=0 nk and the δi are chosen as following:

δi = (2−pi−1 − 2−pi)/2 (13)

To apply the Taylor approximation, let a = x0 + x1 +∑m
2 δi. The approximation function is now:

f̃(x) = f(x0 + x1 +
m∑

2

δi) +

f ′(x0 + δ1 +
m∑

2

δi)(
m∑

2

xi −
m∑

2

δi)

= a0(x0, x1) +
m∑

2

ai−1(x0, xi) (14)

where

ai−1(x0, xi) = f ′(x0 + δ1 +
m∑

2

δk)(xi − δi) 2 ≤ i ≤ m

The error analysis of the STAM is similar to the SBTM
algorithm. The constraints for the parameter configuration
are:

2n0 + n1 ≤ pf + log2(|f ′′(ξ2)|) (15)

g ≤ 2 + log2(m− 1). (16)

3.4 Input Range Scaling

The above analysis was based on the input range x ∈
[0, 1). Both SBTM and STAM can be adapted to other in-
put ranges by first making a linear transformation of the ac-
tual input range to this range without changing the value of
f(x).

For an n-bit input xi, let x̂i be the transformed value and
assume the decimal point is right of the LSB. If the input
range is [xmin, xmax), then

xi − xmin
xmax − xmin

=
x̂i
2n

⇒ xi =
x̂i
2n

(xmax − xmin) + xmin (17)

3.5 VHDL Extension

To allow easy usage of the STAM algorithm in VHDL
designs, some simple extensions were introduced by mak-
ing use of the comment section inside VHDL code seg-
ments. The user includes the name and the body of the
target function as well as some configuration parameters.
The following example demonstrates the instantiation and
usage of a sin function in the VHDL source.

architecture ...
...
-- __STAM_BEGIN__
-- my_function(x) = Sin(x)
-- range_min = 0
-- range_max = 1
-- segments = 8 2 2 2 2
-- decimal_point = 16
-- __STAM_END__
component my_function is port (
clk: in std_logic;
x: in std_logic_vector(15 downto 0);
fx: out std_logic_vector(20 downto 0));
end component;
...
begin
...
f0: my_function
port map (clk=>clk, x=>x, fx=>fx);

...

Four tables are generated for the 16-bit input. The dec-
imal point statement indicates that decimal point is located
at the left side of the most significant bit. The output will
be ready after the next rising clock edge and will be valid
as long as the input x is valid. The clock signal is required
since synchronous RAMs are used to store the tables.

The VHDL codes are first passed to a preprocessor be-
fore going to the synthesis stage. A flow chart of the pre-
processor is shown in Fig 4. First, the function extractor

4

VHDL Genertor
STAM table
VHDL codes

Cos(x)

-- f(x) = Sin(x)

VHDL

table[0][8] = 0087df99
...

...

Sin(x)

-Sin(x)

YACAS scripts

STAM table generation

function extraction

Sin(x)

Figure 4. Extended VHDL preprocessor.

extracts the function body in the extended VHDL block
and passes it to YACAS (YACAS is public domain soft-
ware which performs symbolic arithmetic operations [2]).
YACAS accepts the input function, finds the symbolic ex-
pression first and second derivatives and passes the results
to the table generation program. The table generation pro-
gram transforms the input strings to a sequence of arith-
metic operations and generates the content of the lookup
tables. These contents will be used in the VHDL generator
to generate synthesizable VHDL code using Xilinx Block-
RAM [8] as the lookup tables.

With this extension, an arbitrary twice differentiable
function can be used in VHDL without knowledge of the
detailed implementation. The default evaluation time is 1
clock cycle but this can be easily modified in the gener-
ated structural VHDL codes. This preprocessing method
can be easily adapted for other HDL languages such as Ver-
ilog with minor modifications.

3.6 Floating Point Extension to Fly

The extended fly compiler supports basic floating-point
operations, such as addition, subtraction and multiplication
with different precisions. Transcendental functions such as
square root and exponential are frequently required to eval-
uate the force or acceleration in the N-body problem. Such
functions can be implemented using the modified STAM
approach. This section will describe the development of
a floating point coprocessor for the N-body problem which
computes v−3/2.

In the original STAM algorithm, the input value is con-
sidered to be a fixed point number within a predefined
range. It is possible to modify the logic so that it can handle
specific functions for floating-point arithmetic.

Range reduction and result correction are necessary in
the floating point implementation. Consider the IEEE 754
binary floating point number representation:

v = 1.f × 2e (18)

Then,

v−3/2 = (1.f × 20)(−3/2) × (2(−3/2)e) (19)

When e is even, let e = 2N , equation 19 becomes:

v−3/2 = (1.f × 20)(−3/2) × (2−3N) (20)

Similarly, if e is odd, let e = 2N + 1, equation 19 becomes:

v−3/2 = (1.f × 20)(−3/2) × (2−3N)× (2−3/2) (21)

In both cases, the fractional part can be calculated using
STAM with the input range [1, 2), and the exponent part
implemented using shift and add operations. If e is odd, the
final result should be multiplied by 2−3/2.

Normalization of the STAM output is required to convert
it back into a floating point format. Since for 1 ≤ v < 2 the
output of STAM has a range 0.354 < v−3/2 < 1, the loca-
tion of the leading one must be one of the two most signifi-
cant bits. The datapath of the calculation is shown in fig 5.
Since it supports arbitrary size floating-point numbers, the
precision can be modified to suit the application.

To implement the circuit on an FPGA, the fly [3] com-
piler was used to generate synthesizable VHDL code and a
Pilchard board [4] was used as the reconfigurable platform.
Pilchard uses a DIMM memory bus interface which pro-
vides high I/O performance compared to the PCI bus. Fly
can take a Perl-like description of an algorithm and fully
supports floating-point arithmetic of arbitrary precision. In
addition, the mechanism of the fly compiler allows for easy
integration of a block such as STAM. The fly compiler was
modified such that it can handle the power15() function
using the built-in function mechanism.

Due to the limited amount of memory available on the
FPGA chip, the STAM used 16-bit integers as input and the
table size is (8,2,2,2,2). STAM was used to compute the
function f(x) = x−3/2 where 1 ≤ x < 2. Note that since
STAM requires an input 0 ≤ x < 1, the transformation
x̂ = x − 1 was applied as described in equation 17. Thus
the actual function approximated by the STAM module is
f(x̂) = (x̂ + 1)−3/2 where 0 ≤ x̂ < 1. As the output of
BlockRAM is 32-bit, the memory usage is 2(8+2)×4×32 =
131072-bits or 32 BlockRAMs.

4 Implementation

Figure 6 shows the datapath of the design which imple-
ments Equations 1, 2 and 3.

5

exponent
 fraction

STAM

exp - bias
 exp - bias - 1

0
fsize - 1
fsize

esize +

fisze - 1

fsize - 1:0

esize - 1:0

1 0

0:0

exp1

fsize - 1:0

+

esize - 1:0
 esize - 1:0

esize - 1:0

esize - 1:1 ## "0"
 esize - 1:esize-1 ## esize-1:1

3N

2's complement

-3N

esize - 1:0

esize - 1:0

esize - 1:0

+ bias -1
 +bias - 2

1 0
 1 0

fsize - 1:0

fsize - 1:0

fsize - 1:0

fsize - 3:0 ## "00":
fsize - 2:0 ## "0"

fsize - 1:fsize:1

exp
 fra

esize - 1:0

esize - 1:0
 fsize - 1:0

0
fsize - 1
fsize

esize +

fisze - 1

0
 exponent
 fraction

x 2
(-3/2)

0
fsize - 1
fsize

0
 exponent
 fraction

esize +fsize:0

0 1

Figure 5. Datapath of v−3/2 using STAM for
floating point arithmetic.

A program written in the fly language was used to imple-
ment the equation 2, the inner loop of an N-body simulation.
The input of the program is xi, xj and ε while the output is
the acceleration (aij) for a particular value of xj . Most of
the constructs are parallel in nature so that the vector ma-
nipulation can be processed simultaneously. For example,
xj − xi can be done at the same time for each scalar in xj
and xi. By appropriately inserting assignment statements
in the program for pipelining, a fully-pipelined core can be
generated using the fly compiler. The resulting VHDL code
can produce a new value of aij every cycle. In addition,
the fly code can used for simulation and verification by di-
rectly executing it under the Perl environment [3], saving
time and reducing errors compared with manually translat-
ing the algorithm description into VHDL. The summation
in equation 1 was done outside the fly core and a floating
point accumulator was used to compute and store the value
ai.

The floating point module supplied by the fly compiler
is readily parameterized so the tradeoff between accuracy
and resources is adjustable. Different sizes of fraction and
magnitude can be implemented from the same description.

As the fly core used a register interface, in order to al-
low the design to run at maximum speed, a dedicated host
interface, as shown in Fig 7, was developed so that it can

�

�

�

� �

�

�

�

��� � �

	

��
 � �
��� �

���

��� � � �
� �������

	

��
 � �
��� �

� �

��� � � �
� �������

	

��
 � �
��� �

���

��� � � �
� �������

Figure 6. Datapath of the N-body pipeline.

provide a new xj every clock cycle. There are two input
buffers each for xj and xi. Dual-port BlockSelect RAMs
are used to construct these buffers in order to reduce area
usage and isolate the clock domains of interface and core
units. The host program first fills the xj buffer. The de-
sign will loop through the xj buffer for each xi received
from the host. By doing so, an N-body problem requires
N × 2 write operations instead of N 2 as long as the input
buffers are large enough to store all N data. Also, the core
design can start a new computation every clock cycle if the
xi buffer is not empty. Thus the pipelined design can be
fully utilized to generate outputs at throughput of 1 result
per clock cycle. If N is too large then not all xj’s can be
stored in the input buffer and the host program is required
to partition the problem and perform a final correction.

5 Results

The N-body simulation using the STAM for function ap-
proximation was implemented on a Xilinx XCV1000E-6
FPGA with a total of 10260 slices for the 32-bit configu-
ration. The number of BlockSelect RAM used in the design
was 32 for all configurations.

In order to test our design, the NEMO toolkit [1] was
used for generating data and performing the N-body sim-

6

Xi buffer

Host

N body core

Xj buffer

Figure 7. Block diagram of the host interface.
Xj is buffered to reduce required host band-
width from O(N2) to O(N).

ulation. The Nbody0 simulation program in the NEMO
toolkit is modified to interface with our design. A test run
using the modified NEMO code and a dataset of 256 parti-
cles was performed. The dataset was generated according
to the Plummer model by a program in the NEMO toolkit.
The Plummer model is widely used for modeling galaxies
in Stellar Dynamics studies. To evaluate the quantization
error incurred by the design, the force pipeline was used
to calculate the force exerted on each of the 256 particles
in the dataset at time zero. The average quantization error
(QERR) is computed as:

QERR =
1

N

∑

i

20 log

∣∣∣∣
outi − refi

refi

∣∣∣∣ (22)

where outi are the outputs from FPGA and refi are the
corresponding double precision reference outputs.

In figure 8, the average quantization error is plotted
against the fraction length. As expected, for fraction lengths
below 15-bits, the quantization error decreases linearly with
the fraction length. The graph tails off at longer word length
due to the limited precision of the STAM table used in this
implementation. The precision required for an N-body sim-
ulation depends on the underlying problem being solved.
Using our implementation, the user can choose the fraction
length which best suits their requirements.

In figure 9, the clock frequency reported by the design
tools is plotted against the precision. All configurations
run successfully at 50 MHz. The performance of this de-
sign compares favorably to GRAPE-1 and GRAPE-3. A
GRAPE-1 unit has a peak speed of 240 MFLOPs while a
GRAPE-3 chip have a peak speed of 300 MFLOPs. Using
the GRAPE convention of 30 floating-point operations per
pipeline, this design running at 50 MHz has a peak speed
of 1.5 GFlops. This equates to 5 times the performance
of a GRAPE 3 chip [5]. The performance of this design
also compares favorably with the software implementation

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

6 8 10 12 14 16 18 20 22 24

A
ve

ra
ge

 Q
ua

nt
iz

at
io

n
E

rr
or

(d
B

)

Fraction Precision (bits)

"error.dat"

Figure 8. Average quantization error versus
precision.

50

50.2

50.4

50.6

50.8

51

51.2

51.4

6 8 10 12 14 16 18 20 22 24

F
re

qu
en

cy
 (

M
H

z)

Fraction Precision (bits)

"frequency.dat"

Figure 9. Frequency versus precision for the
N-body problem.

in NEMO. The NEMO program running on a Pentium-III
800MHz machine requires 46 µs to compute each force
value. Using this implementation it takes 10µs to compute
each force value.

In figure 10, the area in slices is plotted against the preci-
sion. It can be seen that the area increases linearly with frac-
tion size. Since the design is parameterized, designs with
different fraction size can be easily generated from the same
description. If the application calls for a configuration with
fraction width less than or equal to 15-bits, it is possible to
achieve better performance by implementing 2 pipelines on
the chip. With 2 pipelines running in parallel, the design
can potentially achieve a peak speed of 3 GFLOPs.

Since the magnitude of force between particle pairs
varies greatly, quantization error introduced by the accu-
mulator in the long chain of summation operation can sig-
nificantly degrade the accuracy of the result. It was found
that using a longer accumulator fraction size greatly reduces
quantization error without significantly increasing the area.
Thus, 32-bit floating point accumulators were used for all
configurations. Table 1 shows the average quantization er-

7

4000

5000

6000

7000

8000

9000

10000

11000

6 8 10 12 14 16 18 20 22 24

A
re

a
(s

lic
es

)

Fraction Precision (bits)

"area.dat"

Figure 10. Area versus precision for the N-
body problem.

Table 1. Effect of different accumulator frac-
tion size on area and quantization error.

FP Config ACC Config Area QERR
(exp, frac) (exp, frac) (Slices) (dB)

(8, 7) (8, 7) 4111 -24
(8, 7) (8, 23) 4934 -32.6

ror and slices used by two implementations with different
size accumulators.

6 Conclusions

A flexible framework for applying the STAM method has
been presented. A preprocessor was developed which can
be used to generate synthesizable VHDL modules which
implement arbitrary user defined functions from comments
inside VHDL source code. This function generator was
integrated into the fly environment to extend its flexibility
and efficiency. An N-body problem simulation was im-
plemented using this framework to demonstrate the utility
of such an approach. Without detailed knowledge of the
STAM implementation, a fully pipelined N-body core was
generated from 246 lines of fly source code. Furthermore,
implementations with different floating point precision can
be implemented from the same source code, facilitating the
analysis of floating point precision, area utilization and per-
formance. This framework can be used to solve real world
problems with minimum design effort and with sacrificing
performance.

7 Acknowledegments

The work described in the paper was substantially sup-
ported by grants from the Research Grants Council of the

Hong Kong Special Administrative Region, China (Project
No, CUHK4333/02E) and the Germany / Hong Kong Joint
Research Scheme sponsored by the Research Grants Coun-
cil of Hong Kong and the German Academic Exchange Ser-
vice (project No. G HK006/02).

References

[1] NEMO - A Stellar Dynamics Toolbox. In
http://bima.astro.umd.edu/nemo/.

[2] Yet another computer algebra system (YACAS). In
http://yacas.sourceforge.net/.

[3] C. Ho, P. Leong, K. Tsoi, R. Ludewig, P.Zipf, A. Ortiz,
and M. Glesner. Fly - a modifiable hardware compiler. In
Proceedings of the twelfth International Workshop on Field-
Programmable Logic & Applications, 2002.

[4] P. Leong, M. Leong, O. Cheung, T. Tung, C. Kwok, M. Wong,
and K. Lee. Pilchard - a reconfigurable computing platform
with memory slot interface. In Proceedings of the IEEE Sym-
posium on FCCM, 2001.

[5] J. Makino and M. Taiji. Scientific Simulation with Special-
Purpose Computers - the GRAPE systems, pages 41–48. John
Wiley & Sons Ltd, 1998.

[6] M. J. Schulte and J. Stine. Symmetric bipartite tables for ac-
curate function approximation. In T. Lang, J.-M. Muller, and
N. Takagi, editors, Proceedings of the 13th IEEE Symposium
on Computer Arithmetic, pages 175–183, Los Alamitos, CA,
1997. IEEE Computer Society Press.

[7] J. E. Stine and M. J. Schulte. The symmetric table addition
method for accurate function approximation. Journal of VLSI
Signal Processing, 21:167–177, 1999.

[8] Xilinx. Using the Virtex Block SelectRAM+ Features. Appli-
cations Note XAPP130, 2000.

8

