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Abstract

A system for the rapid prototyping of floating point hard-
ware designs is presented. This system, called Float, con-
sists of a floating point class for the simulation of quanti-
zation effects associated with low precision floating point
operators; an optimizer which can automatically determine
the minimal number of exponent and fraction bits required
for a specified degree of accuracy; and a parameterized
floating point library which can generate floating point op-
erators with arbitrary precision. A digital sine-cosine gen-
erator is used as an example.

1 Introduction

In the standard field programmable gate array (FPGA)
based prototyping methodology, algorithms are first devel-
oped in standard programming languages such as C on a
personal computer or workstation using floating point arith-
metic. When the system is later implemented in hardware,
a fixed point version of the algorithm is derived from the
floating point version and then translated into a hardware
design in a hardware description language such as VHDL.
Finally, the design is synthesized for a field programmable
gate array (FPGA) based prototyping environment where it
can be tested.

To date, FPGA systems have almost solely used fixed
point arithmetic. Although several groups have imple-
mented floating point adders and multipliers using FPGA
devices [6, 3, 2], very few systems employing floating point
arithmetic have been reported.

Thus, although most scientific, digital signal processing
(DSP) and financial applications are initially developed us-

ing floating point computations, its large overhead in a hard-
ware implementation precludes its use in customized hard-
ware. This overhead manifests itself in the form of larger
area requirements and longer design time than an equiva-
lent fixed point system.

It is envisaged that FPGA density has improved to a
point where area concerns are becoming less significant,
and aided by Moore’s Law, density will continue to improve
at an exponential rate. To address the design time issue, we
present a tool called Float which automates the translation
of a high level algorithmic description to an FPGA imple-
mentation. We believe that hardware systems employing
floating point computations will become increasingly pop-
ular as the density of hardware improves, particularly in ap-
plications where variables have a very large dynamic range,
or the designer wishes to avoid the complexity of translating
the implementation to fixed point.

Float is embedded in the Perl programming lan-
guage [7]. To use the Float system, a user first describes
an algorithm using the Float class and then simulates it by
executing the resulting Perl program. After correctness has
been verified, an optimizer together with a set of test vectors
are invoked to determine the minimum floating point preci-
sion for each variable to reach some user-specified trade-
off between quantization error and circuit size. The algo-
rithm can then be automatically compiled to synthesizable
VHDL (currently under development), operators being ob-
tained from a parameterized VHDL Float library, which can
then be used to make a hardware realization of the design.

A design using the above methodology has the following
features:

� The designer need not have expertise in the implemen-
tation of floating point arithmetic.
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Figure 1. Floating point algorithm design flow.

� The description of the circuit is decoupled from the
floating point format used in its implementation.

� The size of the exponent and fraction of the floating
point number can be different for each signal in the
final implementation. It would be too tedious for a de-
signer to implement this design style manually.

� The optimizer uses a user-specified set of input vectors
together with a cost function which takes into account
the tradeoff between quantization error and the size of
circuit.

� Design time is greatly reduced since simulation is done
at a very high level and the resulting hardware imple-
mentation is correct by construction.

2 Floating Point Tools

Float consists of the following modules:

� A Perl class called Float for the representation of
floating-point numbers. Simulation of the effect of low
precision floating point operations is performed in this
class.

� An optimizer which minimizes a cost function by ad-
justing the floating point format of the Float variables
in an algorithm function.

� A VHDL generation module which produces synthe-
sizable VHDL code.

Figure 1 illustrates the Float design flow. A designer
begins by writing a Perl function, hereafter referred to as
the algorithm function, to represent the algorithm to be im-
plemented. All variables used in the algorithm are Float

objects, where Float is a Perl class that is capable of repre-
senting a floating-point value under arbitrary precision. The
function takes a number of Float variables as input and pro-
duces a number of Float variable as the output.

By varying the precision of the Float objects, the opti-
mizer minimizes a cost function which is a weighted sum
of the quantization error of the outputs of the algorithm
function and the circuit size of the resulting implementa-
tion. In order to determine the outputs, a set of test input
vectors are required. The algorithm function is executed
with the test vectors as inputs, Float operators being used
to perform computation. The class computes the result us-
ing both IEEE double precision and the user-specified pre-
cision. These two results are then used to compute the quan-
tization error, with an underlying assumption that the IEEE
double precision result is without quantization error, and the
Float precision is less than double precision. Given the pre-
cision of a floating point operator, the cost function also
includes a term which is an estimate of the circuit size.

Once the optimizer has determined a suitable precision
for each variable in an algorithm function, a compiler can
output synthesizable VHDL code for implementing the al-
gorithm on a reconfigurable computing platform. The com-
piler first parses the algorithm function to produce an ex-
pression tree, each node corresponding to either a variable
or an operator. The precision of variables are provided by
the optimizer, and the compiler simply instantiates compo-
nents with the required precision from a floating point op-
erator module generator library.

2.1 Representation of Floating-Point Numbers

IEEE 754 double-precision floating-point numbers are
64-bits in length [1]. From left to right (most significant
to least significant bit), a double has a sign bit which indi-
cates whether the number is positive or negative, followed
by 11-bits for the exponent and 52-bits for the fraction. The
exponent is a signed number represented with a bias of 1024
and the fraction represents a number less than 1. The sig-
nificand of the floating-point number is 1 plus the fraction
part. For example, if e is the biased exponent and f is
the value of fraction field, the number being represented is
1:f � 2e�1024. When the size of the exponent is changed,
the bias is changed accordingly as follows:

bias = 2ebits�1
� 1 (1)

where ebits are the number of exponent bits.
Float supports arbitrary precision floating point num-

bers. The representation used is a variant of the IEEE 754
standard, where the most significant bit is a sign bit, but
the exponent and fraction precision of a Float number is
of lower precision than IEEE double precision since double
precision is used as a reference signal for the computation
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of the quantization error. Float does not currently support
denormalized numbers, rounding modes, special values etc.

2.2 Float Class

To describe hardware that utilizes variable precision
floating point computations, a class, called the Float class,
which facilitates the simulation of arbitrary precision float-
ing point arithmetic was developed. Perl is a modern high
level programming language which offers improved pro-
ductivity over traditional languages such as C. The follow-
ing features of Perl were important to the design of the Float
system:

� Perl supports objects which are used to abstract the de-
tails of variable wordlength operators.

� Perl supports operator overloading so that if x and y are
Float objects, one can write x + y instead of x.add(y).

� Perl has strong memory management and string ma-
nipulation facilities making it easy to construct VHDL
module generators.

� Perl is very portable so the Float design environment
can run on many platforms including Unix, Linux and
Windows.

� There are many open source software libraries avail-
able for Perl.

The Float object provides several methods for interro-
gation of its parameters and computation. The main ones
are:

� add(), multiply(): The add() and multiply() methods
will add/multiply two Float objects together at their
specified precision, creating a new Float object. If the
two floating point numbers have a different number of
exponent bits, the output will have an exponent being
the max of the two. Similarly, if the two numbers have
different fraction sizes, the output will have fraction
bit length equal to the max of the two input bit lengths.
Overloading is used so that the + and � operators will
invoke the add() and multiply() methods respectively.

Apart from the arbitrary precision result, another IEEE
754 double precision floating point calculation is also
computed. This value is used as a reference value for
computing quantization error. Furthermore, the max-
imum and minimum range of this reference value is
stored in the object for computation of the minimum
exponent value which is required.

� setExponentSize(), setFractionSize(): The setExpo-
nentSize(), setFractionSize() methods will set the pre-
cision of a Float object. For setFractionSize(), the

value of the object will be truncated if the fraction size
will be smaller than original.

� setValue(), getValue(): These two methods are used
to retrieve and write the value represented by the Float
object. Two values are stored, the IEEE double preci-
sion reference value, and the arbitrary precision value.

� getQERR(): Both the arbitrary size floating point
number and reference double precision floating point
value are stored in the Float object. getQERR() returns
their difference.

2.3 Optimization

Although any measure of accuracy could be used, av-
erage quantization error, QERR, in decibels is used in this
paper. QERR is computed as follows:

QERR =
X
i

20 log

����outi � refi
refi

���� (2)

where outi are the outputs and refi are the corresponding
double precision reference outputs.

The total circuit area is determined by summing the area
estimate for each operator. Operator area is estimated from
the precision of the Float class, assuming a Xilinx Virtex-E
series FPGA [8]. Although the area estimation is based on
a specific reconfigurable computing platform, optimization
using these measures should lead to reasonable area esti-
mates on other platforms.

The area in Virtex slices [8] occupied by floating-point
adder is modeled by the following equation:

add area = 6� ebits + 12� fbits (3)

where ebits is the number of exponent bits in the Float rep-
resentation and fbits is the number of fraction bits.

Similarly, the area occupied by a floating-point multi-
plier is given by the following equation:

mul area = 230+ 8� ebits + 106�

�
fbits
15

�2
(4)

The cost function is computed from the QERR and cir-
cuit area measures using the following equation:

fcost = a�

0
@X

i

add areai +
X
j

mul areaj

1
A+b�QERR

(5)
where a and b are non-negative weightings and i and j sum
over all the add and multiply operators in the algorithm
function respectively.

The optimizer uses the Nelder-Mead [5] method to min-
imize the cost function (without requiring the computation
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of derivatives) by adjusting the precisions of Float variables
in the algorithm function. The designer can adjust a and b

in Equation 5 to weight the relative importance of area and
QERR. For example, if the designer needs a very accurate
result and circuit area is not critical, a large value of b can
be used.

The optimization procedure is outlined as follows:

1. Change the precisions of Float variables (using
Nelder-Mead).

2. Simulate the algorithm function at the specified preci-
sion using user-supplied input data.

3. Compare the result with the reference result and com-
pute the cost function.

4. Repeat until the optimization terminates.

2.4 VHDL Generation

A simple compiler which can generate a datapath from
the algorithm function is under development. Since transfer
of control statements are not supported, datapath generation
is simple, a code generator simply turning Float variables
into VHDL signals, and Float operators into VHDL instan-
tiations of operators from a module library.

The module library was implemented in Perl and cur-
rently supports two operators, namely multiply and add.
Thus one can use the module library to generate operators
with arbitrary precision. Operators are pipelined for high
throughput.

3 Digital Sine-Cosine Generator

Digital sine-cosine generators [4] have a number of ap-
plications, such as the computation of discrete Fourier trans-
form and in certain digital communication systems, such as
in future Hiperlan systems for high performance wireless
indoor communication. Let s1n and s2n denote the two
outputs of a digital sine-cosine generator, the outputs at the
next sample can be computed using the following formula:
�

s1n+1
s2n+1

�
=

�
cos(�) cos(�) + 1

cos(�) � 1 cos(�)

� �
s1n
s2n

�

(6)
Equation 6 will be used as an example of a Float applica-

tion in the rest of this paper, with cos � = 0:9. Its algorithm
function can be described by the Perl code below:

$cos_theta = new Float(8, 23, 0.9);
$cos_theta_p1 = new Float(8, 23, 1.9);
$cos_theta_m1 = new Float(8, 23, -0.1);

$s1[0] = new Float(8, 23, 0);

Figure 2. Expression tree for the s1 output of
the sine-cosine generator.

$s2[0] = new Float(8, 23, 1);

for ($i = 0; $i < 50; $i++)
{
$s1[$i+1] = $s1[$i] * $cos_theta +

$s2[$i] * $cos_theta_p1;

$s2[$i+1] = $s1[$i] * $cos_theta_m1 +
$s2[$i] * $cos_theta;

}

This algorithm function first declares the variables used
via Float object instantiations, each object being specified
to have an 8 bit exponent and 23 bit fraction in this exam-
ple. The initial value of the variable is also defined in the
Float constructor, s1 and s2 being initialized to 0 and 1 re-
spectively. The update values of s1 and s2 are derived using
the floating-point operators provided by the Float class via
overloading. Note that the loop is only used for simulation
purposes, and is not considered part of the algorithm func-
tion.

This algorithm function can be passed to different com-
ponents for processing. Normally, a set of input vectors is
specified for the algorithm function, but since this particu-
lar function is an oscillator with no inputs, the time domain
response is computed via the loop in the algorithm function.

The simulator can be used to determine the result and the
optimizer can determine a suitable precision format for each
of the five Float objects in the algorithm function. which
minimizes the following optimization, the inner part of the
algorithm function can be parsed to produce an expression
tree (the expression tree for the s1 output of the sine-cosine
generator is shown in Figure 2) and VHDL output can be
generated from this tree. Finally, the VHDL output can be
used for simulation and/or implementation on a reconfig-
urable computing platform.
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Table 1. Area and speed of the floating point
library.
Fraction Size Circuit Size Frequency Latency

(bits) (slices) (MHz) (cycles)

Multiplication
7 178 103 8
15 375 102 8
23 598 100 8
31 694 100 8

Addition
7 120 58 7
15 225 46 7
23 336 41 7
31 455 40 7

4 Results

4.1 Module Library

Different configurations of adders and multipliers were
extracted from the module library, simulated and synthe-
sised for the Virtex XCV1000E-6 FPGA. Table 1 is a sum-
mary of the resource requirements, maximum reported fre-
quency and latency for a fixed exponent length of 8 bits
and different fraction sizes. The adder is not yet fully op-
timized and the maximum frequency was 40MHz with a 7
stage pipeline.

4.2 Simulation of Algorithm Function

The algorithm function of the sine-cosine generator was
simulated by directly executing it in Perl. Figure 3 shows
the resulting double precision reference output.

Figure 4 shows the quantization error of the Float simu-
lation for different fraction sizes, as a function of time. In
the simulation, the exponent field was set to be large enough
to avoid overflow. As expected, the error is reduced as the
number of fractional bits (and hence precision) is increased.

Figure 5 shows the QERR of digital sine-cosine gener-
ator with a varying number of fraction bits, assuming that
the exponent field is large enough to avoid overflow. For
fraction bits varying from 12 to 40 bits, the QERR ranged
from -50 to -210 dB.

4.3 Optimization

By varying the fraction size of the Float objects using the
technique described in Section 2.3, the optimizer can min-
imize the cost function and maintain the quantization error
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Table 2. Optimization result using different
QERR values where (x,y) are the (exponent
size, fraction size) in bits.

cos(�) cos(�)QERR s1 s2 cos(�)
+1 �1

-52 (5,10) (5,12) (5,11) (5,11) (5,12)
-73 (5,15) (5,14) (5,15) (5,15) (5,16)
-98 (5,19) (5,18) (5,19) (5,19) (5,20)
-123 (5,23) (5,21) (5,23) (5,24) (5,24)
-148 (5,26) (5,28) (5,27) (5,27) (5,28)
-171 (5,31) (5,30) (5,31) (5,31) (5,32)
-195 (5,35) (5,33) (5,35) (5,36) (5,36)
-218 (5,38) (5,39) (5,38) (5,39) (5,40)

smaller than a given QERR. This technique was used to de-
termine the minimum area requirements for a given QERR.
Table 2 shows the optimized values for number of frac-
tion bits and exponent bits for different minimum QERR.
As expected, the trend for all variables is an increase in
wordlength as the QERR requirement is increased.

Figure 6 compares the optimized circuit size (which al-
lows variables to have different numbers of fractional bits)
to a scheme where all variables have the same number of
fraction bits (i.e. the fixed fraction case). The “Fraction
Size” curve was made by computing the area of the sine-
cosine generator for the case that all variables have the frac-
tion size on the x-axis. The “Optimized Circuit Size” curve
was made by using the fraction size of the x-axis as the start-
ing point for an optimization, with the maximum QERR
specified to be that of the fixed fraction case. Thus it can
be seen from the figure that for the same quantization error,
a 2% to 5% reduction in area is achieved by the optimization
process.

In the sine-cosine generator, all variables require simi-
lar precisions. In applications where variables have widely
different precisions, one would expect the scheme allowing
different fractional sizes to offer a much larger improvement
in area efficiency.

5 Conclusion

The Float environment for the rapid prototyping of float-
ing point digital system was described. These tools enable
the designers to concentrate on higher level algorithmic is-
sue thus increasing the productivity and being able to ex-
plore more of the design space in a give time. A digital
sine-cosine generator was implemented using Perl descrip-
tion as an example of using Float.
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