
University of London
Imperial College of Science, Technology and Medicine

Department of Computing

Customisable and Reconfigurable Platform for
Optimising Floating Point Computations

Chun Hok Ho

Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, September, 2009

Abstract

This research proposes a platform for developing reconfigurable architectures dedi-

cated to floating point computations. The platform involves customisable and recon-

figurable architectures with the associated tools and methods for modelling, designing

and using the proposed architectures to optimise floating point computations.

Customisability refers to modifying devices to target a specific application domain

before fabrication. Reconfigurability refers to programming devices to implement dif-

ferent application circuitries in such domain after fabrication. A customisable and

reconfigurable platform has been delivered, with the following contributions.

(1) Modelling: To model the proposed devices and compare with existing FPGA de-

vices, this thesis proposes a methodology by using existing vendor tools to estimate

the area, delay and power consumption of the devices.

(2) Synthesisable Datapath: The proposed architectures capture common patterns ap-

pearing in floating point datapaths such as bus-based logic and routing. By exploiting

shared configuration bits, we propose a datapath-style coarse-grained reconfigurable

fabric. In addition, we adopt synthesisable design flow allowing user customisation.

(3) Floating point FPGA: We propose an FPGA device which consists of island-style

fine-grained fabric for general purpose computations and datapath-style coarse-grained

fabric for floating point computations. The coarse-grained fabric contains dedicated

circuitries for floating point operation and is customisable according to domain-specific

requirements.

(4) Application design flow: A high level design flow is proposed which can translate

a high level description of an application into a reconfigurable implementation. The

key component in the high level design flow is a technology mapper which can map

a given dataflow graph of an application into reconfigurable devices with different

architectural parameters.

Floating point applications have been implemented on an instance of the proposed

reconfigurable architecture and promising results have been reported. Application

domains include digital signal processing, scientific applications, and financial appli-

cations. Area can be reduced by 25 times and delay can be shortened by 4 times on

average, while dynamic energy consumption is reduced by 14 times when compared

with a traditional FPGA implementation with comparable technology.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my advisor Profes-

sor Wayne Luk, for his support, encouragement and trust throughout the years. His

insightful comments have improved my papers, presentations, and this thesis tremen-

dously, and his advice has always helped me to make the right decision.

This thesis would not have been possible without the guidance from my secondary

thesis advisor Professor Philip Leong. He enlightened me the fascinating reconfig-

urable computing research and supervised me in both the bachelor and master degree

studies. I deeply appreciated his encouragement and suggestions in these years.

I am indebted to Professor Steven Wilton, for assisting me in designing the archi-

tecture of the floating point FPGA. He proposed the synthesisable datapath FPGA

architecture (Figure 4.1) described in Chapter 4. His knowledge in System-on-chip

development as well as his research attitude inspired me the way to conduct serious

scientific research.

Special thanks are due to Brad Quinton for his collaboration in our synthesisable

datapath FPGA architecture study for generating the layout of the datapath FPGA

fabric (Figure 4.6).

I would like to express my gratitude to Chi Wai Yu, for his contribution in preparing

benchmark circuits used in Chapter 5.

It is a real privilege for me to study in the Custom Computing Group, Department of

Computing at Imperial College London. It is one of the largest groups in the world

dedicated to reconfigurable computing research. I enjoyed the research experience

here and I learnt a lot from my sincere colleagues. Thanks are especially given to

Ray Cheung, David Thomas, Kubilay Atasu, Haohuan Fu, Yuet Ming Lam, Kuen Hung

Tsoi, Gary Chow, Julien Lamoureux and Markus Koester, for their invaluable supports

and countless hours of discussions which help me in preparing this thesis.

During my graduate study, I had the good fortune to receive an internship opportunity

and I enjoyed wonderful spring and summer working in the Xilinx Research Labs at

San Jose, California. The experience was fruitful and the project gave me the idea of

developing high level synthesis tools for floating point FPGA. I would like to express

my most sincere thanks to my mentors Prasanna Sundararajan, Jeff Mason and Dave

Bennett, for sharing their insights and expertise, which have greatly broadened my

knowledge and vision.

My special thanks go to Lucia Lau, Edith Ngai, Dongping Zhang and Olivier Pernet,

for their supportive comments and being companionable flatmates who enrich my

overseas research experience in the United Kingdom.

The financial support from Overseas Research Students Award Scheme and UK En-

gineering and Physical Sciences Research Council (grant number EP/D060567/1) is

gratefully acknowledged.

Dedication

To my parents,

for raising me to be the person I am today;

and to Angela,

for her continued patience, care, support and love.

Table of Contents

Abstract 2

Acknowledgements 4

Dedication 6

Table of Contents 7

List of Tables 11

List of Figures 14

List of Publications 16

1 Introduction 17

2 Background and Related Work 23

2.1 Introduction . 23

2.2 FPGA Architecture . 24

2.3 FPGA Design Tools . 27

2.4 Floating Point Number System . 29

2.4.1 Overview . 29

2.4.2 Addition and Subtraction . 30

2.4.3 Multiplication . 33

2.5 FPGA-based Floating Point Units . 33

2.6 Floating Point Applications . 40

2.7 Benchmark Circuits . 42

2.7.1 Digital Sine-Cosine Generator (dscg) 42

2.7.2 Ordinary Differential Equation (ode) 43

2.7.3 Matrix Multiplication (mm3) . 43

2.7.4 FIR Filter (fir4) . 44

2.7.5 Butterfly Circuit (bfly) . 44

2.7.6 Brace, Ga̧tarek and Musiela (bgm) 45

2.8 Terminology . 46

2.9 Summary . 47

3 Virtual Embedded Block 48

3.1 Introduction . 48

3.2 Overview . 51

3.2.1 VEB Model . 51

3.2.2 VEB generation tool . 56

3.3 Vendor Specific Design Flow . 58

3.3.1 VEB Parameters Estimation . 59

3.3.2 Integration into Xilinx Tools . 62

3.3.3 Integration into Altera Tools . 63

3.4 Results . 64

3.4.1 Verification of the VEB Design Flow 64

3.4.2 Embedded Floating Point Unit . 66

3.4.3 Exploration of Technology Trends 68

3.5 Discussion . 71

3.6 Summary . 73

4 Synthesisable Datapath FPGA Fabric 76

4.1 Introduction . 76

4.2 Overview and Architectural Requirements 79

4.3 Architecture . 81

4.4 Example Mapping . 84

4.5 Parameter Optimisation . 86

4.6 Results . 89

4.6.1 Benchmark Circuits . 90

4.6.2 Area Results - Optimised Parameters 91

4.6.3 Area Results - Derived Parameters 95

4.6.4 Path Delay Results . 97

4.6.5 Delay and Power Results - Derived Parameters 97

4.6.6 Proof-of-Concept Layout . 99

4.7 Comparison to Previous Work . 100

4.7.1 Alternative Debugging Architectures 100

4.7.2 Fine-Grained Synthesisable Fabric 102

4.7.3 Datapath-Oriented FPGAs . 103

4.7.4 Coarse-Grained Fabrics . 103

4.8 Summary . 104

5 Floating Point FPGA: Architecture and Modelling 107

5.1 Introduction . 107

5.2 FPFPGA Architecture . 109

5.2.1 Requirements . 109

5.2.2 Architecture . 111

5.3 Example Mapping . 115

5.4 Modelling . 116

5.4.1 Overview . 116

5.4.2 Power Modelling . 118

5.5 Results . 120

5.6 Comparison with Previous Work . 126

5.7 Summary . 128

6 CAD Tools for Floating Point FPGA 131

6.1 Introduction . 131

6.2 Requirements . 134

6.3 Technology mapper . 136

6.3.1 Overview . 136

6.3.2 Algorithm . 139

6.3.3 Bitstream Generator . 146

6.3.4 Example . 148

6.4 Integration . 149

6.4.1 Trident . 150

6.4.2 The fly compiler . 152

6.5 Results . 154

6.6 Summary . 155

7 Conclusion 156

7.1 Summary of Achievements . 156

7.2 Future Work . 159

Bibliography 163

List of Tables

2.1 FPGA-based floating point operators implementations. 34

2.2 Number of tests generated by TestFloat-2a. 40

2.3 FPGA implementation results for double precision floating point oper-

ators. 40

3.1 Delay parameters for Virtex II-6 devices. 60

3.2 Delay parameters for Stratix-6 devices. 61

3.3 Estimates of logic cell area including configuration bit, buffer and in-

terconnect overheads. There is no public information about the die

area of Stratix device so we assume that it has the same normalised LC

area as the one in Virtex II 1000 device. 61

3.4 Summary of resource utilisation and critical path delay for embed-

ded multiplier (MULT18X18S) and VEB implementations on an Xilinx

XC2V6000-FF1152-6 device. An asterisk (∗) indicates that retiming is

enabled during synthesis. 65

3.5 Summary of resource utilisation and critical path delay for 18x18 em-

bedded multiplier in DSP block and VEB implementations on an Altera

EP1S80F1508C6 device. An asterisk (∗) indicates that retiming is en-

abled during synthesis. 65

3.6 Breakdown of critical path delay for embedded multiplier and VEB im-

plementations on a XC2V6000 device. bgm∗ indicates that retiming is

enabled during synthesis. 66

3.7 FPGA implementation results for floating point benchmark applica-

tions on a Xilinx XC2V6000-6-FF1152 device. The VEB size is given

as the FPU area (in equivalent LC resources) plus the LC resources

needed to implement the rest of the circuit. The second column (EMs)

indicates number of MULT18X18S instantiated. 67

3.8 FPGA implementation results for floating point benchmark applica-

tions on an Altera EP1S80F1508C6 device. The VEB size is given as the

FPU area (in equivalent LC resources) plus the LC resources needed to

implement the rest of the circuit. The second column (EMs) indicates

number of 9x9 multipliers instantiated. 67

3.9 Comparison of VEB and VPR. 74

4.1 Architectural parameters. 84

4.2 Meaning of mask bits in the example. 85

4.3 Area breakdown. 88

4.4 Parameters used for each benchmark circuit. 92

4.5 Area results when the fabric is optimised for each benchmark circuit. . 92

4.6 Parameters used for each benchmark circuit when low-level parame-

ters are computed. 95

4.7 Area results when low-level parameters are computed. 95

4.8 Delay estimates of paths within fabric. 97

4.9 Datapath delay and power estimates for configured fabric. 99

4.10 Comparison of coarse-grained reconfigurable fabric. 105

5.1 Parameters for the coarse-grained unit. 113

5.2 Benchmark circuits. 120

5.3 Normalisation on the area of the coarse-grained units against a Virtex

II LC. SP and DP stand for single precision and double precision re-

spectively. For the values shown in the second column (Area), 15%

overheads have already been applied on the coarse-grained units. . . . 122

5.4 FPFPGA implementation results. Values in the brackets indicate the

percentages of logic cell used in corresponding FPGA device. CGU

stands for coarse-grained unit and FGU stands for fine-grained unit. . 129

5.5 Power estimations. ∗Circuit syn7 cannot fit in a XC2V3000-6 FPGA

so the power number of FPGA implementation is obtained from a

XC2V8000-5 FPGA. 130

5.6 Comparison of floating point reconfigurable fabric. Area reduction and

speedup are compared to an FPGA device with embedded multiplier. 130

5.7 Comparison to previous embedded FPU model for double precision

floating point benchmarks. 130

6.1 Performance of the technology mapper. Most circuits require minimum

number of coarse-grained unit (CGU). 154

List of Figures

1.1 Floating Point FPGA. 20

1.2 Relationship diagram of each chapter. 21

2.1 Standard island-style FPGA architecture. 24

2.2 Datapath of floating point adder. 36

2.3 Datapath of floating point multiplier. 37

2.4 Four-tap FIR filter. 44

2.5 One butterfly stage in FFT. 45

3.1 Modelling embedded elements in FPGAs using Virtual Embedded Blocks. 52

3.2 The block diagram of the VEB design flow 56

3.3 Phase 1 – VEB creation flow. 58

3.4 Phase 2 – VEB integration flow. 58

3.5 Performance of fixed-point bgm benchmark with different VEBs, with

retiming. 70

3.6 Performance of floating-point bfly benchmark with different FPU de-

lays, with retiming. 70

4.1 Fabric architecture (configuration elements not shown). 81

4.2 Bitblock (status flags not shown). 83

4.3 Example mapping. 85

4.4 Parameter sweeps, where M=3, R=2, F=3, C=2, A=4, P=4 unless

otherwise specified. 87

4.5 Parameter sweeps, where M=3, R=2, F=3, C=2, A=4, P=4 unless

otherwise specified. 87

4.6 Proof-of-concept layout. 100

5.1 Architecture of the FPFPGA. 113

5.2 Architecture of the coarse-grained unit. 114

5.3 Example mapping for matrix multiplication. 115

5.4 Modelling flow overview. 117

5.5 Comparisons of FPFPGA and Xilinx Virtex II FPGA device. 125

5.6 Floorplan of the single precision bgm circuit on Virtex II FPGA and

FPFPGA. Area is significantly reduced by introducing coarse-grained

units. 125

5.7 Dynamic energy consumption ratio of single precision FPFPGA. 127

6.1 Logic flow of the technology mapper. 136

6.2 Sample dataflow graph and its representation. 138

6.3 Mapping of equation z =
p

a+ b× c + d × g. 148

List of Publications

• C.H. Ho, C.W. Yu, P.H.W. Leong, W. Luk and S.J.E. Wilton, “Floating Point FPGA:

Architecture and Modelling”, to appear in IEEE Transactions on Very Large Scale

Integration Systems.

• S.J.E. Wilton, C.H. Ho, B. Quinton, P.H.W. Leong and W. Luk, “A Synthesiz-

able Datapath-Oriented Embedded FPGA Fabric for Silicon Debug Applications”,

in ACM Transaction of Reconfigurable Technology and Systems, 1(1):7:1–7:25,

March 2008.

• C.H. Ho, P.H.W. Leong, W. Luk and S.J.E. Wilton, “Rapid Estimation of Power

Consumption for Hybrid FPGAs”, in Proceedings of Field Programmable Logic, pp.

227–232, 2008. Stamatis Vassiliadis outstanding paper award.

• C.H. Ho, C.W. Yu, P.H.W. Leong, W. Luk and S.J.E. Wilton, “Domain-Specific

FPGA: Architecture and Floating Point Applications”, in Proceedings of Field Pro-

grammable Logic, pp. 196–201, 2007. Stamatis Vassiliadis outstanding paper

award.

• S.J.E. Wilton, C.H. Ho, P.H.W. Leong, W. Luk and B. Quinton, “A Synthesiz-

able Datapath-Oriented Embedded FPGA Fabric”, in Proceedings of Fifteenth

ACM/SIGDA International Symposium on FPGAs, pp. 33–41, 2007.

• C.H. Ho, P.H.W. Leong, W. Luk, S.J.E. Wilton, S. Lopez-Buedo, “Virtual Em-

bedded Blocks: A Methodology for Evaluating Embedded Elements in FPGAs”,

in Proceedings of Field-Programmable Custom Computing Machines, pp. 35–44,

2006.

Chapter 1

Introduction

Improvements in floating point performance have led to major advances in appli-

cations as diverse as weather forecasting, problem modelling, financial engineering,

molecular dynamics and drug discovery. Although supercomputers based on micro-

processor clusters are commonly used for these applications, it appears that their effi-

ciency in terms of sustained performance and power consumption can be significantly

improved through increased fined-grained parallelism and better memory utilisation.

A good example of a processor optimised for power consumption and performance

is the one used in IBM Roadrunner machine [Craw 08], which is currently one of

the fastest supercomputers [Dong 08]. Yet we note that its floating point unit (FPU),

which contributes more than 95% computation time in benchmark programs like LIN-

PACK [Dong 03] as well as many other floating point applications like Monte Carlo

simulation and N-body problem, constitutes only 10% of the total roadrunner compu-

tation chip (Cell Broadband Engine) area [Flac 05]. The other 90% serves to provide

the FPUs with data and perform tasks such as caching, instruction fetching, memory

decoding, speculative execution, register files, etc. In addition, the high power con-

sumption of general-purpose processors prohibits the use of floating point arithmetic

in low cost embedded systems. We believe that using spatially-parallel hardware

oriented techniques with a cluster of FPUs often has advantages in terms of perfor-

18 Chapter 1 – Introduction

mance, power consumption and area over the traditional general-purpose processor

approach.

It is possible to build a dedicated circuit for a specific floating point application using

application specific integrated circuit (ASIC) technology, which offers the potential to

achieve the highest performance with the least power consumption and area. How-

ever, the associated fabrication cost and design time preclude their use in low to

medium volume applications, and ASIC designs are not flexible since the circuits can-

not be changed once they are fabricated. Another way of implementing floating point

applications is to use field programmable gate array (FPGA) technology. An FPGA

contains an array of logic gates and storage elements, in which the functionality and

interconnection can be configured by downloading a bitstream into its configuration

memory. Given a flexible FPGA architecture, a tailor-made datapath and an FPU clus-

ter, a floating point application is likely to have faster execution speed and lower

power consumption than general-purpose processors. FPGA technology has been suc-

cessfully applied to accelerate a large number of diverse applications including signal

processing, communications, networking and robotics. The application of FPGA tech-

nology to computational problems is also known as reconfigurable computing.

In recent years there has been a significant increase in the size of FPGAs. Current

FPGA technology allows arbitrary precision floating point arithmetic while retaining

hardware speed. Recent work on dot product, matrix-vector and matrix multipli-

cation [Unde 04] indicates that FPGAs will soon be able to significantly outperform

modern microprocessors because of advantages in memory bandwidth and in floating

point performance. Another study [Dou 05] shows that an FPGA-based FPU imple-

mentation can achieve 15.6 GFLOPS (billion floating point operations per second)

with 1.6 MB local memory and a 400 MB/s external memory bandwidth. Our pre-

vious research [Ho 02a] indicated that using different arbitrary size of floating point

operation in a single design can reduce the circuit area while the accuracy can remain

the same. In addition, another work [Zhan 05] shows that an FPGA-based implemen-

tation of BGM financial model running at 50MHz is over 25 times faster than software

19

computations on a 1.5 GHz Intel Pentium 4 machine. However, as the current FPGA

architecture only embeds blocks for fixed point operations such as fast carry-chains

and block multipliers, it is expected that the computation speed can be made even

faster and the power consumption can be lower if more primitive blocks optimised

for floating point operations are embedded in FPGAs.

Having better floating point performance in terms of speed, area and power con-

sumption is beneficial to several domains of applications. For example, in Monte

Carlo simulation models, increasing performance of floating point operations will al-

low more paths to be simulated, and therefore the result will be more accurate and

faster to converge. Financial applications which require real-time response can meet

stringent timing requirement with less hardware, and therefore reduce the associated

cost. Graphics applications can process more transformations to produce more realis-

tic effects. Reduction in power consumption of floating point operations allows longer

battery life for embedded systems, significantly improving their effectiveness.

The research proposes a platform for developing and using novel reconfigurable ar-

chitectures which improve the execution speed of floating point computations while

retaining their programmability. In particular, we propose a standard island-style

FPGA architecture coupled with novel reconfigurable heterogeneous fabric to facili-

tate the reconfigurable aspect of this platform. By adopting FPGA architectures, one

can implement different applications and datapaths on FPGA devices after fabrication.

The platform consists of tools allowing customisation of reconfigurable devices be-

fore fabrication. Using standard macrocell design flow, one can customise their own

reconfigurable device by specifying architecture parameters of the heterogeneous fab-

ric. Such customisation enables further optimisations on domain-specific applications.

Moreover, the platform consists of high level synthesis tools allowing users to imple-

ment floating point applications into the novel FPGA device using higher abstraction

of description. The high level synthesis tools also assist the design and development

of heterogeneous fabric.

20 Chapter 1 – Introduction

Fine-grained units

Coarse-grained units with embedded floating point units
Figure 1.1: Floating Point FPGA.

We propose a hypothesis that certain specific reconfigurable architecture can accel-

erate floating point computations with much less silicon area and energy. To verify

this hypothesis, we evaluate instances of reconfigurable architecture based on a set of

benchmark circuits. Figure 1.1 shows an instance of a typical customisation of such

reconfigurable architecture. More details are discussed in Chapter 5.

To summarise, a customisable and reconfigurable platform for optimising floating point

computations has been developed, with the following contributions.

(A) Modelling: To model the proposed devices and compare with existing FPGA de-

vices, this thesis proposes a modelling methodology by using existing vendor tool

to estimate the area, delay and power consumption of the devices.

(B) Synthesisable Datapath: The proposed architectures capture the common pattern

appearing in floating point datapaths such as bus-based logic and routing. By

exploiting shared configuration bits, we propose a datapath-style coarse-grained

reconfigurable fabric. In addition, we adopt synthesisable design flow allowing

user customisation.

(C) Floating point FPGA: We propose an FPGA device which consists of island-style

fine-grained fabric for general purpose computations and datapath-style coarse-

grained fabric for floating point computations. The coarse-grained fabric con-

tains dedicated circuitries for floating point operation and is customisable ac-

21

cording to domain-specific requirements.

(D) Application design flow: A high level design flow is proposed which can translate

a high level description of an application into a reconfigurable implementation.

The key component in the high level design flow is a technology mapper which

can map a given dataflow graph of an application into reconfigurable devices

with different architectural parameters.

Chapter 1 -

Introduction

Chapter 5 –

Floating Point

FPGA:

Architecture and

Modelling

Chapter 6- CAD

Tools for Floating

Point FPGA

Chapter 4 –

Synthesisable

Datapath FPGA

Fabric

Chapter 3 –Virtual

Embedded Block

Customisable and Reconfigurable Platform for Floating Point Applicaitons

Chapter 7 –

Conclusion
Chapter 2 –

Background

and Related

Work

Figure 1.2: Relationship diagram of each chapter.

Figure 1.2 provides a relationship diagram of each chapter in the thesis. Each block

corresponds to a chapter in the thesis. Circular blocks indicate contributions related

to software aspects while square blocks indicate contributions related to hardware

aspects. Rectangular blocks refer to auxiliary materials.

Chapter 2 offers a comprehensive literature review of related work. The chapter in-

troduces island-style FPGA architecture, the associated CAD tools to model and to

program FPGA devices, the floating point number system, the FPGA-based imple-

mentations of floating point operators and benchmarks circuits employed to evaluate

22 Chapter 1 – Introduction

floating point FPGA architectures. The circuits can be as small as a simple dot-vector

product or as large as interest rate model derivatives.

Chapter 3 demonstrates a methodology to model a commercial FPGA with arbitrary

embedded blocks. This chapter corresponds to Contribution A and it addresses one

of the important challenges in this thesis – how to conduct a meaningful comparison

with real FPGA.

Chapter 4 proposes a customisable and reconfigurable heterogeneous architecture

and a synthesisable design flow which can model this architecture. The parameterised

architecture allows us to search for a near-optimum floating point FPGA design. This

chapter corresponds to Contribution B and it is an initial attempt to approach new

architecture for floating point computation.

Chapter 5 presents a novel floating point FPGA architecture by extending the het-

erogeneous architecture discussed in Chapter 4 and employing the FPGA modelling

methodology used in Chapter 3. This chapter corresponds to Contribution C and we

evaluate the performance of proposed FPGA architecture in area, speed, and dynamic

power consumption.

Chapter 6 describes a high level synthesis flow to support the proposed reconfigurable

architecture. The chapter demonstrates an architecture-aware technology mapper

which can be integrated into existing hardware compiler to produce circuits imple-

mented on the proposed reconfigurable device. This chapter corresponds to Contri-

bution D.

Conclusion of the thesis and suggestions for future work are made in Chapter 7.

Chapter 2

Background and Related Work

2.1 Introduction

This chapter presents an introduction to the concepts and terminology relevant to the

thesis. It covers both development and usage of reconfigurable devices. The chapter be-

gins with a brief overview of standard FPGA architecture. The concepts of fine-grained

units and heterogeneous blocks are explained with published work as examples. The

development of current floating point units on commercial FPGA devices is described

and the operations involved in floating point circuitry are illustrated. This chapter

reports a set of FPGA-based floating point operators and they are used as baseline to

evaluate our work. We also show that these operators are compliant with the IEEE

754 standard. It is crucial to maintain the integrity of the thesis such that a justified

comparison is allowed. Examples which demand intensive floating point operations

are presented to demonstrate the importance of high speed floating point arithmetic.

It is followed by an introduction to a set of benchmark circuits which are used it-

eratively in the thesis. The benchmark circuits include small kernels which capture

common operations used in digital signal processing and linear algebra computations.

The selected kernels require intensive floating point operation. The chapter concludes

number of design flows to model reconfigurable architecture. Finally, a list of termi-

24 Chapter 2 – Background and Related Work

Programmable routing

Fine-grained units

Clock management

Local memory

Heterogeneous

blocks

IO pads

Figure 2.1: Standard island-style FPGA architecture.

nology is given to summarise some acronyms and technical terms uses iteratively in

the thesis.

2.2 FPGA Architecture

Figure 2.1 shows the block diagram of a standard island-style FPGA structure. An

FPGA is made up of reconfigurable fabric. The fabric itself consists of arrays of fine-

grained units and heterogeneous blocks. A fine-grained unit usually implements a

single function and has a single bit output. The most common fine-grained unit is

a K-input lookup table (LUT), where K typically ranges from 4 to 6. The LUT can

implement any Boolean equation of K-inputs. This type of fabric is called a LUT-based

fabric. Several LUT-based cells can be joined in a hardwired manner to make a cluster.

This results in little loss in flexibility but can reduce area and routing resources within

the fabric [Ahme 04].

Fine-grained units can also be implemented using a product-term block consisting

of an AND plane and an OR plane. The area of a product-term block is usually

larger than that of a LUT-based fabric, as it usually has larger fan-in along with small

amounts of routing resources to connect the planes. We consider the product-term

unit to be a fine-grained unit, because it usually has a small number of output bits.

Product-term blocks appear in system-on-chip [Yan 06] as well as commercial CPLD

2.2 FPGA Architecture 25

devices.

While a fine-grained unit is flexible and can usually implement any Boolean function,

the area, delay and power overhead of an array of fine-grained units that implement a

given function are often significantly larger than an appropriate heterogeneous block.

Commercial FPGAs, which employ fine-grained fabric as the major component, in-

clude special features in the fabric dedicated to operations which are common in

digital design. A notable example is the dedicated carry-chain on both Xilinx and

Altera devices. The reason for adding such feature is obvious - integer addition and

subtraction are common operations for all digital circuits. Multiplexers are another

example, as they are inferred frequently in a digital design.

A heterogeneous block is usually less flexible and is typically much larger than a fine-

grained one, but is often more efficient for implementing specific functions. The het-

erogeneous block is usually programmable to some degree, combining several func-

tions such as those in an arithmetic logic unit (ALU). Outputs are often bus-based.

They can be parameterised in terms of features such as bus-width and functionality.

As an example, the ADRES architecture [Mei 03] assumes that the wordlength and

the functionality of a heterogeneous block is the same as the targeted processor.

Heterogeneous functional blocks are found on commercial FPGA devices. For exam-

ple, a Virtex II device has embedded fixed-function 18-bit multipliers and a Xilinx

Virtex 4 device has embedded DSP units with 18-bit multipliers and 48-bit accumula-

tors. The flexibility of these blocks is limited and it is less common to build a digital

system solely using these blocks. When the blocks are not used, they consume die

area and may contribute to increased delay without adding to functionality.

Numerous research projects on FPGA architecture to support domain-specific appli-

cations have been conducted. Leijten-Nowak and van Meerbergen [Leij 03] proposed

mixed-level granularity logic blocks and compared their benefits with a standard

island-style FPGA using the Versatile Place and Route tool (VPR) [Betz 99]. Ye, Rose

and Lewis [Ye 03] studied the effects of coarse grained logic cells and routing re-

26 Chapter 2 – Background and Related Work

sources for datapath circuits, also using VPR.

Kuon [Kuon 07] has reported the effectiveness of embedded elements in current FPGA

devices by comparing with the equivalent ASIC circuit under 90nm technology pro-

cess. Akan’Ova et al. [Aken 05] has demonstrated a standard-cell-based FPGA with

improving performance using a structural design and layout approach. Compton and

Hauck [Comp 04] have suggested a flexibility measurement on domain-specific re-

configurable architecture. Beck revised VPR to explore the effects of introducing hard

macros [Beck 04]. A more recent VPR tool [Luu 09] supports single-driver routing

configuration, and heterogeneous blocks, and provides optimised electrical models.

Several previous studies have considered datapath-oriented FPGAs [Cher 96, Hauc 04,

Leij 03, Ye 06, Ye 03]. In these architectures, configuration bits are shared among

multiple lookup-tables and multiple routing switches.

Coarse-grained architectures, in which lookup-tables are replaced by ALUs, have also

been described in [Cron 99, Gold 00, Mars 99, Sing 00, Ebel 96]. Of these, the RaPiD

architecture [Ebel 96] is specifically designed for use in an SoC. RaPiD contains a

linear array of dedicated functional units connected using dedicated buses. Control

logic is implemented using a separate module that provides control signals to the

functional units.

RaPiD is intended to support fairly large applications such as image and signal pro-

cessing, and may be best implemented as a hard programmable logic core. It would

be possible to “scale down” RaPiD and use it as a synthesisable core. However, like

the datapath FPGAs described in the previous section, the unconfigured RaPiD fabric

contains combinational loops. Our architecture eliminates these using a directional

routing network.

While many studies can satisfy certain domain-specific applications, they fail to recog-

nise the applications which demand intensive floating point computations. Our project

aims at inventing methodology and architecture to produce an FPGA optimised for

2.3 FPGA Design Tools 27

floating point computations.

There are a few research projects dedicated to FPGA architecture for floating point

computations. Beauchamp et al. augmented VPR to assess the impact of embed-

ding floating-point units in FPGAs [Beau 08]. The study of embedded heteroge-

neous blocks for the acceleration of floating point computations has been reported

by Roseler and Nelson [Roes 02]. Both studies conclude that employing heteroge-

neous blocks in designing FPU on FPGAs achieves area saving and increased clock

rate over a fine-grained approach.

However, the work in [Roes 02] does not take account of the architectural modifi-

cation of the FPGA device and solely adopts existing heterogeneous blocks in FPGA

device to design floating point units. Our research considers any potential embed-

ded elements, including embedded floating point unit, or embedded floating point

operators in the design of fabric. It is described in Chapter 5.

While [Beau 08] evaluate the results by employing a modified VPR flow, where float-

ing point unit model is added to the VPR design flow, their work inherits the limitation

given by VPR. For instance, as direct comparison to commercial FPGA device cannot

be made, the results may not reveal the actual situation. In addition, since their work

does not consider any routing resource optimisation as well as bus-based logic optimi-

sation, their reported results may tend to be too conservative. This project proposes

a model which is comparable to existing FPGA device and that could produce more

realistic results. This methodology is discussed in Chapter 3.

2.3 FPGA Design Tools

Different strategies have been proposed to model FPGA architectures. The VPR com-

puter aided design (CAD) tool [Betz 97, Luu 09], originally developed by Betz and

Rose, supports parameterised island-style FPGA architectures. It can place and route

28 Chapter 2 – Background and Related Work

designs and can be used to estimate performance. However, the model of the recon-

figurable fabric is obsolete and most commonly available features such as carry-chains

cannot be modelled without proper modification to the tool, in which the modification

requires significant understanding of the software. In addition, there is no commer-

cial quality synthesis tool to support the VPR tool. This prohibits the use of VPR as it

is difficult to implement relatively large circuit defined by users.

Yan and Wilton [Yan 06] employ a synthesisable flow to model reconfigurable fab-

ric. They describe the architectures of the fabric using hardware description language

(HDL) and synthesis it with standard cell library design flow. The area and timing

information can be obtained directly from the synthesis tool. The model also facili-

tates rapid evaluation because of the mature ASIC standard cell library design flow.

However, it is usually not the most optimum ASIC implementation because of the

limitation of the standard cell library design flow. A full-custom ASIC design flow can

usually implement the same model with less area and shorter delay. More information

regarding to the FPGA modelling is presented in Chapter 3

In terms of high level synthesis on an FPGA device, several schemes such as ASC [Menc 06],

Handel-C [Agil 07], Trident [Trip 07], the fly compiler [Ho 02b] are proposed. ASC,

also known as a stream compiler, provides a software-like programming interface to

hardware design while at the same time keeping the performance of manually-design

circuits. It allows existing C/C++ code be seamlessly transformed to ASC code to

increase productivity and generate a large selection of implementations. The user can

choose the most suitable design from them.

Handel-C is a language that is similar to ANSI-C but dedicated to hardware design. It

allows parallel execution constructs and offers a software-influenced hardware design

methodology. It can produce a register transfer level netlist based on a code written

in C language.

Fly compiler adopts similar semantic to Handel-C. However, the core is simple and

lightweight in which new constructs can be easily integrated into the compiler. This

2.4 Floating Point Number System 29

facilitates high level synthesis research and this project employs the fly compiler to

produce different experiments efficiently. Furthermore, it is possible to extend the fly

compiler such that it can support the proposed FPGA architecture and this is illus-

trated in Chapter 6.

Studies have been made in optimising floating point operations on existing FPGA

architecture. Langhammer [Lang 08] proposes a datapath circuit generator which

optimises single precision floating point operations on traditional FPGA devices. The

improvements in area and speed are achieved by exploiting fused operations, in which

consecutive floating point operations are analysed, redundant normalisations in the

operations are removed and a new type of operation is created to replace the original

operations.

2.4 Floating Point Number System

2.4.1 Overview

Every real number can be approximated by a floating point number in the IEEE 754

standard [ANSI 85] as long as that number is within specific range. The floating point

number format is based on scientific notation with limited size for each field. For a

normalised floating point number in the IEEE 754 single precision standard where

the integer part is always equals to 1, the sign bit is 1 bit in size. The integer part is

omitted as it is always equals to 1. The size of fraction part is 23 bit and the size of

exponent is 8 bit. The base is always equal to 2 and the total size of a single precision

floating point number is 32 bits. In general, an IEEE 754 floating point number F can

be expressed as follows:

F = (−1)s × 1. f × 2e−b, where (2.1)

30 Chapter 2 – Background and Related Work

b = 2esize−1− 1 (2.2)

where s stands for the sign bit, f stands for the fraction and e stands for the biased

exponent. In order to express a negative exponent, there is an exponent bias b associ-

ated with the exponent field. The actual exponent is the value of the exponent field

minus the bias. The value of bias depends on the size of exponent esize as in equa-

tion 2.2. The term significand represents 1. f in which integer field and fraction field

are packed together.

For single precision floating point system, the bias is 127 since esize is 8. If the expo-

nent field e is 128, the actual exponent is 128 - 127 = 1. The integer field for most

numbers is equal to 1 since they are normalised. Subnormal numbers are indicated

by the exponent being 0. In this case, F = 0. f × 2−126 is represented.

2.4.2 Addition and Subtraction

Let F1 and F2 represent the two single precision floating point numbers, Fsum is the

sum of these two numbers and Fminus is F1 − F2. As floating point format uses a

signed-magnitude representation, the equation Fminus = F1 − F2 can be rewritten as

Fminus = F1 + (−F2). Therefore, this section discusses the addition algorithm only.

Subtraction is a variation of addition in which the sign bit of F2 is inverted.

Let Fi be denoted as (−1)si · (1 + 0. fi) · 2ei−b where si, fi and ei are the sign field,

fraction field and the exponent field in floating point representation respectively and

b is the exponent bias.

The IEEE 754 standard requires that the arithmetic operations, including addition

and multiplication should be computed as if first produced an intermediate result

correct to infinite precision with unbounded range, and then coerced this to fit in

the destination’s format. However, it is very expensive in terms of the intermediate

2.4 Floating Point Number System 31

storage size, if the operands differ greatly in size. Assuming that size of fraction field

is 2, 1.11 · 210+ 1.00 · 2−2 would be calculated as

x = 1.110000000000 · 210

y = 0.000000000001 · 210

x + y = 1.110000000001 · 210

which is then rounded to 1.11 · 210. It uses 13 bits to store the result which is 6 times

the size of fraction. When the difference of exponent is larger, the size of intermediate

result is larger too.

Without using infinite precision for storing the intermediate result, lengthening the

intermediate result by 2 bits at the right is adequate for obtaining properly rounded

to zero result. These 2 bits are known as guard bit and round bit respectively. The

guard bit can guarantee the relative rounding error in the result is less then 2ε, where

ε is referred to as machine epsilon, the smallest value that can be represented under

the given exponent. The round bit can guarantee the rounding to zero mode is al-

ways correct [Gold 91]. In general, the sum of F1 and F2 is evaluated as shown in

Listing 1, where the symbol ## denotes concatenation of two registers, si, ei and fi

denote the sign field, exponent field and fraction field of the floating point number F1

respectively. The algorithm further assumes that it uses single precision format for F1

and F2. However, with some minor modifications, it can be used for arbitrary preci-

sion floating point formats. For simplicity, the algorithm does not check any special

cases such as negative zero, illegal number and so on. These cases are handled in the

hardware implementation of floating point addition.

32 Chapter 2 – Background and Related Work

Listing 1: Calculate F1+ F2 with floating point arithmetic
Data: F1 = (s1, e1, f1), F2 = (s2, e2, f2)
Result: Fans = (sans, eans, fans) = F1+ F2

edi f f ⇐ e1− e21

if edi f f ≥ 0 then2

fa⇐ f13

fb⇐ f24

es⇐ edi f f5

else6

fa⇐ f27

fb⇐ f18

es⇐ 2’s complement of edi f f9

end10

if sa = 1 then11

rma⇐ 2’s complement of fa12

end13

if sb = 1 then14

rmb⇐ 2’s complement of fb15

end16

fa⇐ (“001′′## fa)17

fb⇐ (“001′′## fb)18

fb⇐ shift fb right by edi f f bits19

ftmp⇐ rma + rmb20

if ftmp is negative then21

ftmp⇐ 2’s complement of ftmp22

sans⇐ 123

else24

sans⇐ 025

end26

find the leading one of ftmp27

shift ftmp left until ftmp(msb) = 1,28

eans⇐ ea - number of bits shift to left. msb is the location of most significant bit29

remove the integer bit, fans = ftmp(msb− 1...0)30

return sans, eans and fans as sign bit, biased exponent field and fraction field31

respectively

2.5 FPGA-based Floating Point Units 33

2.4.3 Multiplication

Multiplication is simpler than addition assuming that a fixed point multiplier is pro-

vided. The product of F1 and F2, where both F1 and F2 are normalised floating point

numbers, is evaluated as in Listing 2. For simplicity, the algorithm does not check any

special cases such as negative zero, illegal number and so on. These cases are handled

in the hardware implementation of floating point multiplication.

Listing 2: Calculate F1× F2 with floating point arithmetic
Data: F1 = (s1, e1, f1), F2 = (s2, e2, f2)
Result: Fans = (sans, eans, fans) = F1× F2

sans⇐ s1⊕ s21

append 1 bit "1" to f1 and f2 at left as the hidden integer2

field3

v1⇐ ”1”## f14

v2⇐ ”1”## f25

do fixed point unsigned multiplication mc⇐ v1× v26

re1⇐ e1+ e2− b7

shift mc to left until msb of mc is 18

es⇐ number of bit shifted to left9

eans⇐ re1− es10

fans⇐ mc(44...22)11

return sans, eans and fans as sign bit, biased exponent field and fraction field12

respectively

2.5 FPGA-based Floating Point Units

Table 2.1 presents a list of published information of FPGA-based implementation.

Jaenicke and Luk [Jaen 01] have implemented parameterised floating point adder

and multiplier on FPGAs. The design is based on Handel-C language and the data

format is variance of IEEE 754 standard. It is reported that the floating point adder

can perform 28 MFLOPS (million floating operations per second) for arbitrary sizes

of fraction and exponent. A 2D Fast Hartley Transform (FHT) processor has been

developed by using this FPU as basic building blocks and it can perform a 1K-point

transform in 10 µs. Belanovic̀ et al [Bela 02] implemented a parameterised floating

34 Chapter 2 – Background and Related Work

Ja
en

ic
ke

[J
ae

n
01
]

B
el

an
ov

ic
[B

el
a

02
]

D
id

o
[D

id
o

02
]

O
pe

nF
PU

[R
ud

o
05
]

X
ili

nx
C

or
eg

en
[X

ili
05
]

Ta
rg

et
de

vi
ce

X
ili

nx
XC

V
10

00
X

ili
nx

XC
V

10
00

X
ili

nx
Vi

rt
ex

E
X

ili
nx

XC
2V

10
00

X
ili

nx
XC

2V
10

00
A

dd
er

sp
ee

d
28

M
H

z
–

14
0M

H
z

13
7M

H
z

15
8M

H
z

M
ul

ti
pl

ie
r

sp
ee

d
28

M
H

z
–

14
0M

H
z

14
2M

H
z

17
6M

H
z

D
at

a
fo

rm
at

32
-b

it
si

ng
le

pr
ec

is
io

n
32

-b
it

si
ng

le
pr

ec
is

io
n

16
-b

it
(6

-b
it

ex
po

ne
nt

,
9-

bi
t

fr
ac

ti
on

)

32
-b

it
si

ng
le

pr
ec

is
io

n
32

-b
it

si
ng

le
pr

ec
is

io
n

La
te

nc
y

5
3

5
5

5
Pa

ra
m

et
er

is
ed

bi
tw

id
th

ye
s

ye
s

no
no

ye
s

R
ou

nd
in

g
m

od
e

ne
ar

es
t

ze
ro

ne
ar

es
t

ne
ar

es
t

ze
ro

ne
ar

es
t

po
si

ti
ve
∞

ne
ga

ti
ve
∞

ne
ar

es
t

Su
bn

or
m

al
nu

m
be

r
ye

s
ye

s
no

ye
s

no

O
pe

n
so

ur
ce

no
ye

s
no

ye
s

no
Ye

ar
20

01
20

02
20

02
20

05
20

05

Ta
bl

e
2.

1:
FP

G
A

-b
as

ed
flo

at
in

g
po

in
t

op
er

at
or

s
im

pl
em

en
ta

ti
on

s.

2.5 FPGA-based Floating Point Units 35

point library for use with reconfigurable hardware. It is based on the IEEE 754 floating

point format standard. The library includes addition, subtraction, multiplication and

conversion between fixed point and floating point numbers. All of these modules

are specified in VHDL and implemented on the Wildstar reconfigurable computing

engine. They are fully-pipelined and cascadable to form pipelines of floating point

operations. This library is used to develop a hybrid implementation of the K-means

clustering algorithm applied to multi-spectral images.

Dido et al. [Dido 02] proposed a flexible floating point format which is optimised for

video signal processing application. The format employs moderate bitwidth but it can

maintain sufficient output accuracy. This can deliver better performance and consume

less area with acceptable trade-off on accuracy.

To allow comparison between traditional FPGA device and proposed reconfigurable

devices, floating point operators which support arbitrary precision and floating point

benchmark circuits have been developed in HDL model and implemented on com-

mercial FPGA devices. The floating point operators are fully compliant with IEEE

754 [ANSI 85] standard and support 4 rounding modes, subnormal numbers and

exceptions. In addition, they are fully-pipelined and arbitrary size of exponent and

fraction are allowed by modifying the model slightly. To support parameterised float-

ing point operators, a HDL generator is developed using the Perl language which can

generate the associated logic for a specific size of exponent and significant on-the-fly.

Floating Point Adder – The floating point adder is based on a heavily modified open-

source floating point unit [Rudo 05]. It consists of several blocks, namely, a pre-

normalisation block, an addition block, a post-normalisation blocks and an exception

handling block. The datapath of the floating point adder is shown in Figure 2.2. The

figure captures essential steps in computing floating point addition as shown in the

Listing 1. In the pre-normalisation stage, the inputs are registered and the exponents

are compared. The inputs are swapped if the exponent of first operand is smaller than

the second operand. The fractions are shifted to right accordingly and operation mode

36 Chapter 2 – Background and Related Work

s1 exponent_1 fraction_1 s2 exponent_2 fraction_2

esize - 1 fsize - 1 esize - 1 fsize - 1

sa exponent_a fraction_a sb exponent_b fraction_b

_

0 0

esize - 1:0 esize - 1:0

esize:0 esize:0

ediff

0 1 0 1 1 0

2's complement

esize + fsize:0 esize + fsize:0

esize:0 esize:0

esize:0

esize:0

esize:esize

esize + fsize:0 esize + fsize:0

001 1

fsize-1:0 fsize-1:0

shift right
fsize:0

0 1

0 1

00

2's complement

2's complement

fsize+2:0

fsize+2:0

fsize:0

fsize+2:0

fsize+2:0

rmbrmaea2

esize - 1:0

fsize+2:0

fsize+2:0

+

fsize+2:0 fsize+2:0

sa1

2's complement

0 1

fa1

fsize+2:fsize+2

fsize+1:0

fsize+2:0

fsize+2:0

fsize+2:0

priority encoding + normalization

ea3

correct

exponent

fsize+1:0

fsize-1:0

esize - 1:0

esize - 1:0

esize - 1:0

s
ans

e
ans

f
ans

esize:0

esize - 1:0

Figure 2.2: Datapath of floating point adder.

2.5 FPGA-based Floating Point Units 37

eans

s1 exponent_1 fraction_1 s2 exponent_2 fraction_2

0esize - 1 0fsize - 1 0esize - 1 0fsize - 1

fixed point

multiplier

fsize:0
fsize:0

e1+e2 - bias

esize+1:0 esize+1:0

ec0 ec1

+1

mc

esize+1:0

esize+1:0

(2 x fsize - 1):(fsize - 2)

mc0
fsize:0

esize-1:0

esize-1:0

0 1 0 1

mc0(fsize-1:0)

mc(fsize:0) mc(fsize+1:1)

s
ans

e
ans

f
ans

esize-1:0 fsize-1:0 esize-1:0 fsize-1:0

esize-1:0

1 v1 1 v2

mc(fsize+1:fsize+1)

Figure 2.3: Datapath of floating point multiplier.

38 Chapter 2 – Background and Related Work

which indicates if the effective operation (either addition or subtraction) is evaluated.

The most expensive circuit for the pre-normalisation stage is the barrel shifter.

Special number from the input such as subnormal number, infinity and not a number

(NaN) are handled in the exception handling block. Corresponding flags, such as

subnormal flag, zero flag, infinity flag, NaN flag are set according to the combination

of the input. This circuit is simple and only comparators are required. The addition

block takes the output from the pre-normalisation block, in which the data has been

properly aligned and the operation mode is well defined. The addition block adds or

subtracts the numbers according to the operation mode.

The post-normalisation block is the most complicated circuit in the floating point

adder. After the intermediate result is generated by addition block, a priority encoder

inside the post-normalisation block takes the result as an input and counts the num-

ber of leading zero of the result. The exponent is then adjusted and the fraction is

shifted to left depending on the number of leading zero. Different rounding scheme

is enforced according to the input to produce final result. Exception flags like inexact

number, overflow, underflow is generated based on the final result. All the outputs

are registered so the result and the corresponding exception flags are given in next

clock cycle. This block contains two expensive circuits, namely barrel shifters and a

priority encoder.

Floating Point Multiplier – Figure 2.3 illustrates the datapath of floating point mul-

tiplier. Same as the floating point adder, the floating point multiplier is based on the

same open-source floating point unit, and it has been heavily modified. It consists

of several blocks, namely, a pre-normalisation block, a multiplication block, a post-

normalisation block and an exception handling block. In the pre-normalisation stage,

the intermediate exponent is determined by adding exponents from the inputs. Hid-

den bits of the fractions are recovered based on the exponent values. This block does

not have expensive circuits and most of them are comparators and adders.

The exception block of floating point multiplier is the same as the one in floating

2.5 FPGA-based Floating Point Units 39

point adder. It detects any special input values. The multiplication block takes the

output from the pre-normalisation block, in which the hidden bits in fraction has

been recovered properly and an integer multiplication is computed by a multiplier.

The results are then populated to post-normalisation block. The multiplier circuit

consumes significant amount of resource in this block.

The post-normalisation takes the intermediate product from the multiplication block

as input. A priority encoder in the post-normalisation block counts the number lead-

ing zero in the intermediate product. Similar to the post-normalisation block in the

floating point adder, the exponent is then adjusted and the fraction is shift to the left

based on the number of leading zero. Different rounding mode is enforced according

to the input to produce final result. Exception flags like inexact number, overflow,

underflow is generated based on the final result. And all the outputs are registered

and the final result and the associated flags are given in next clock cycle. This block

contains two expensive blocks, namely barrel shifters and a priority encoder.

Verification – To verify the correctness of the floating point operators so that they

are compliant with the IEEE 754 standard, an open-source program called TestFloat-

2a [Haus 98] is employed. By slightly modifying the output options in TestFloat-2a

program, it can create a large number of test cases, which make up of simple pattern

tests intermixed with weighted random inputs for the floating point operators. The

“level 1” test in TestFloat-2a covers all 4 rounding modes, and all boundary cases

of given arithmetic, including underflows, overflows, invalid operations, subnormal

inputs, zeros (positive and negative), infinities (positive and negative), and NaNs.

Each test case contains an operation, a rounding mode, floating point numbers to

be evaluated, an expected result and expected exception flags. The expected results

and the expected exception flags are computed purely in software and do not rely on

machine-specific floating point implementations. A corresponding testbench written

in Verilog is created which reads the test cases generated by TestFloat-2a, invokes the

corresponding floating point operator to compute the result, and compares the result

and the exception flags with the expected output. The test case is created with switch

40 Chapter 2 – Background and Related Work

Floating Point Operation Number of tests

Floating Point Addition/Subtraction 371712
Floating Point Multiplication 371712

Table 2.2: Number of tests generated by TestFloat-2a.

Operator Slices Embedded Multiplier Latency Frequency (MHz)

fpadd2 1777 0 5 134
fpmul2 2150 9 5 76

Table 2.3: FPGA implementation results for double precision floating point operators.

“level 1” in the initial settings of TestFloat-2a. Table 2.2 shows the number of test

vectors has been created for specific floating point operation. All test cases assume

double precision floating point format. The testbench is run in ModelSim 5.7d and no

errors are found.

Implementation – In order to compare with the floating point core using current

commercial FPGA with the one using customisable FPGA, the floating point opera-

tor circuits have been implemented on FPGA device. The reference FPGA device is

XC2V6000 and the speed grade is -5. All the design is synthesised using Synplify

Premier 9.0. The designs are placed and routed and the area and the timing are ob-

tained by vendor CAD suites ISE 9.2i. Table 2.3 presents the area and frequency of

the double precision floating point adder and multiplier.

2.6 Floating Point Applications

Many floating point systems have been implemented on FPGA devices. In [Ho 03],

an N-body solver is developed using Virtex-E device. The computations are based

on parameterised floating point library and can achieve a peak speed of 3GFLOPS.

In [Unde 04], three of the basic linear algebra subroutine (BLAS) functions are esti-

mated and it suggests that FPGA-based implementations outperform modern general-

purpose processor on double precision floating point operations. It also mentions

2.6 Floating Point Applications 41

that unlike CPUs, FPGAs are usually limited by peak FLOPS rather than by memory

bandwidth so improving the floating point computation performance of an FPGA can

obtain similar gain on overall systems.

Zhang et al. [Zhan 05] employ floating point arithmetic to compute the Brace, Ga̧tarek

and Musiela interest rate model for pricing derivatives. While running at relatively

low frequency (50MHz), the performance is 25 times faster than software running on

a 1.5GHz Intel Pentium 4 machine.

Callanan et al. [Call 06] demonstrate an FPGA based lattice QCD processors using

IEEE double precision floating point format and compared with corresponding ASIC

based solutions and PC cluster-based solutions. The FPGAs version, which is imple-

mented on a Virtex II FPGA device, can achieve 1.2GFLOPS when performing Dirac

operation and deliver 0.94GFLOPS on conjugate gradient solver. The performance of

Dirac operation is two times better than purely software implementation.

Zhuo and Prasanna [Zhuo 04] propose an FPGA-based architecture for floating point

matrix multiplication. It employs a linear array architecture and effectively utilises the

hardware resources on the entire FPGA device while reduces the routing complexity.

Their work achieves comparable floating point computation performance and can

deliver up to 26.6GFLOPS and 12.3GFLOPS for single precision and double precision

floating point format respectively.

Morris and Prasanna [Morr 05] report an FPGA-based floating point Jacobi iterative

solver. The design employs a deeply pipelined, highly parallelised IEEE double pre-

cision floating point operator. The solver is implemented on a Virtex II Pro device

running at 77MHz. Depending on the nature of input data, it can achieve up to 36.8

times speedup when compared with a single processor implementation.

42 Chapter 2 – Background and Related Work

2.7 Benchmark Circuits

As there are no existing standard benchmark circuits for floating point applications,

a set of benchmark circuit is implemented using the fly compiler [Ho 02b] or using

HDL. Significant amount of time in developing the benchmark circuits are reduced

as the fly compiler can generate a circuit which contains a datapath and associated

control signals from a software description.

In addition, all the floating point application benchmark circuits assume double pre-

cision floating point arithmetic and employ round-to-nearest-even rounding mode,

while the exception signals from the floating point operator are ignored in the circuits.

By describing the application using Perl-like description and simulate it in Perl envi-

ronment, the fly compiler can speed up the implementation time of the benchmark

applications. Four application circuits have been generated using the fly compiler,

which include a digital sine cosine generator (dscg), an ordinary differential equation

solver (ode), a 3-by-3 matrix multiplication (mm3), a four-tap finite impulse response

filter (fir4), a butterfly circuit for fast Fourier transform (bfly) and a financial deriva-

tives modelling circuit using Brace, Ga̧tarek and Musiela model (bgm) [Zhan 05].

These benchmark applications contain different number of floating point operators

the inter-connection between those floating point operators are different. The bench-

mark applications further assume the input data comes from an off-chip memory.

2.7.1 Digital Sine-Cosine Generator (dscg)

Digital sine-cosine generator [Mitr 98] has a number of applications, such as the com-

putation of discrete Fourier transform and in certain digital communication systems,

such as in future Hiperlan systems for high performance wireless indoor communica-

tion. Let s1n and s2n denote the two outputs of a digital sine-cosine generator, the

outputs at the next sample can be computed using the following formula:

2.7 Benchmark Circuits 43

 s1n+1

s2n+1

 =
 cos(θ) cos(θ) + 1

cos(θ)− 1 cos(θ)

 s1n

s2n

 (2.3)

2.7.2 Ordinary Differential Equation (ode)

Many scientific problems involve the solution of ordinary differential equations. An

ODE solver (ode) is implemented as part of the floating point benchmarks. The bench-

mark circuit solves the ODE [Math 99]:

d y

d t
=
(t − y)

2
over t ∈ [0, 3] with y(0) = 1 (2.4)

Euler method is used and y is approximated by

yk+1 = yk + h
(tk − yk)

2
and tk+1 = tk + h (2.5)

where h is the step size, the smaller value of h, the more accurate of the result.

The ordinary equation solver can take the step size h as the parameter and return the

value of y .

2.7.3 Matrix Multiplication (mm3)

Matrix multiplication is used frequently in different domains. Hence a 3x3 matrix

multiplication application benchmark circuit is developed. The core of the circuit

implements the operation required to evaluate an element of the resulting matrix,

which is a vector dot-product. Extra logic is added to control the dataflow of the

circuit.

44 Chapter 2 – Background and Related Work

D D D

x k1 x k2x k0 x k3

+ ++

X

Y

Figure 2.4: Four-tap FIR filter.

2.7.4 FIR Filter (fir4)

Digital filter is one of the most common applications which requires floating point

arithmetic for high accuracy and precision, we have implemented a 4-tap finite im-

pulse response filter, which is characterised by the following equation:

y4 =
4∑

j=0

k j x4− j (2.6)

where x i is the input of the filter, ki is the filter window and yi is the output. The

datapath of the filter is shown in Figure 2.4.

2.7.5 Butterfly Circuit (bfly)

The fast Fourier transform (FFT) is another important signal processing primitive. The

FFT is composed from butterfly operations which compute z = y+x×w, where x and

y are the inputs from previous stage and w is a twiddle factor. All values are complex

numbers; therefore each multiplication involves 4 multipliers and 2 adders (bfly).

A state machine is implemented to control the dataflow of the circuits. Figure 2.5

illustrates the datapath of a single butterfly which is used as the benchmark circuit.

2.7 Benchmark Circuits 45

Re {x}

Im {x}

Im {w}

Re {w}

X

X

X

X

–

+ +

+

Re {y}

Im {y}

Re {z}

Im {z}

Figure 2.5: One butterfly stage in FFT.

2.7.6 Brace, Ga̧tarek and Musiela (bgm)

The datapath of a design to compute Monte Carlo simulations of interest rate model

derivatives priced under the Brace, Ga̧tarek and Musiela (BGM) model is used as

the final test circuit (bgm) [Zhan 05]. Denote F(t, tn, tn+1) as the forward interest

rate observed at time t for a period starting at tn and ending at tn+1. Suppose the

time line is segmented by the reset dates (T1, T2, ..., TN) (called the standard reset

dates) of actively trading caps on which the BGM model is calibrated. In the model,

the forward rates {F(t, Tn, Tn+1)} are assumed to evolve according to a log-normal

distribution. Writing Fn(t) as the shorthand for F(t, Tn, Tn+1), the evolution follows

the stochastic differential equation (SDE) with d stochastic factors:

dFn(t)
Fn(t)

= µ⃗n(t)d t + σ⃗n(t) · dW⃗ (t) n=1 . . . N. (2.7)

In this equation, dFn is the change in the forward rate, Fn, in the time interval d t.

The drift coefficient, µ⃗n, is given by

⃗µn(t) = σ⃗n(t) ·
n∑

i=m(t)

τi Fi(t)σ⃗i(t)
1+τi Fi(t)

(2.8)

where m(t) is the index for the next reset date at time t and t ≤ tm(t), τi = Ti+1 − Ti

and σn is the d-dimensional volatility vector. In the stochastic term (the second term

on the right hand side of Equation 2.7), dW⃗ is the differential of a d-dimensional

46 Chapter 2 – Background and Related Work

uncorrelated Brownian motion W⃗ , and each component can be written as dWk(t) =

εk

p
d t where εk is a Gaussian random number drawn from a standardised normal

distribution, i.e. ε∼ ϕ(0, 1.0).

2.8 Terminology

Here is a list of special terminologies and the corresponding abbreviations used through-

out the thesis.

• Field programmable gate array (FPGA).

• Application specific integrated circuit (ASIC).

• Floating point unit (FPU).

• Very high speed integrated circuits hardware description language (VHDL).

• Logic cell (LC) – It describes the smallest logic unit in the FPGA. This consists a

4-input LUT, register and dedicated carry logic.

• Logic block (LB) – It refers to an array of LCs which are interconnected via the

local routing resources in the FPGA.

• Embedded block (EB) – It refers to heterogeneous element in the island-style

FPGA. An EB usually contains specific function in an FPGA such as embedded

multiplier and block memory.

• Virtual embedded block (VEB) – It refers to virtual heterogeneous element in the

island-style FPGA. VEB can model arbitrary embedded block even if such block

does not exist in real FPGA devices. More detail on VEB is given in Chapter 3.

• Fine-grained unit (FGU) – It refers to homogeneous element in the island-style

FPGA. It is usually the same as LC unless otherwise specified. We use the term

embedded block.

2.9 Summary 47

• Coarse-grained unit (CGU) – In later context of the thesis, we use the term CGU

to describe a family of heterogeneous architecture proposed in this thesis. It can

be considered as a subset of EB.

• Standard FPGA – It refers to commodity FPGA devices which are usually com-

mercially available.

• Register transfer language (RTL).

2.9 Summary

This chapter introduces the work related to the project. Section 2.2 describes the

common island-style fine-grained fabric and the application-specific heterogeneous

fabric. Section 2.3 discusses the CAD tools for modelling an FPGA and the high level

synthesis design tools for implementing user circuits on an FPGA. Floating point num-

ber system, including the number representation and primitive operations is covered

in Section 2.4. Some published information of FPGA-based floating point units and

the architecture of our FPGA-based floating point operators are summarised in Sec-

tion 2.5. Section 2.6 introduces some floating point applications implemented on

FPGA devices and their performance. Section 2.7 compiles a set of floating point

benchmark circuits which are used iteratively in the thesis. Finally, Section 2.8 lists

terminologies used in the thesis.

Chapter 3

Virtual Embedded Block

3.1 Introduction

Similar to designing ASIC circuitry, when designing FPGA architecture, one major

concern is to identify a justified model which can estimate the performance in terms

of area, delay and power consumption based on user-supplied applications.

Modelling ASIC circuitry is relatively simple once the netlist of the circuit is defined.

Given a set of process parameters, the area of a circuit can be estimated by counting

the number of transistors used with some assumptions on the routing. The timing or

critical delay can be estimated by enumerating the delay of each combinational path.

Modelling reconfigurable architecture is a non-trivial process. The major difference

between ASIC and reconfigurable devices is the latter one can change their datapath

substantially after fabrication. Because of this fundamental difference, definitions of

“area” and “delay” are not the same as those in ASIC. Area is not simply the transis-

tor count of the device and delay is not the critical path of the device. Rather, we

wish to adopt a definition of area and delay to reflect characteristics of applications

implemented on the device.

An application implemented on an FPGA device does not consume all the reconfig-

3.1 Introduction 49

urable resources on the FPGA. Only part of reconfigurable resources are used to per-

form required operations. Therefore, area is tied to the transistor count of the config-

ured region in the device while delay is the critical path of the configured region in

the device. When enumerating the delay of each path, the model has the ability to

recognise the delay of each fine-grained, coarse-grained components and interconnect

along the paths. It also adds complexity in modelling FPGA device.

FPGA vendors offer design tools for users to model and implement applications on

their FPGAs. The tools often involve a tool which translates user applications de-

scribed in HDL to an architecture-specific netlist. This process usually refers to synthe-

sis. The netlist is then implemented in a reconfigurable device. The implementation

process defines the configured region in the device. Area and timing can be retrieved

according to the implementation results. The tools released by vendors support their

own devices. In other words, the tools support different applications but are limited

to specific devices.

In this research, we begin with modifying existing FPGA architecture by embed-

ding user-defined heterogeneous blocks to reconfigurable device to accelerate floating

point computations. We show that this approach allows us to reuse existing design

tools to model new FPGA architecture and also allows us to compare the new FPGA

architecture with the existing device.

To capture the performance of new FPGA architecture, we employ floating point ap-

plications as benchmarks. It is because we need to deal with more advanced archi-

tectures with different heterogeneous blocks which have multiple granularities. In

addition, our application domains usually involve floating point arithmetic so we can

select representative kernels or applications to further optimise the architectures. In

order to establish a model for reconfigurable architecture for floating point computa-

tion, the following issues have to be considered:

1. The model can capture the performance by providing the area, delay and power

data associated with the benchmark circuit.

50 Chapter 3 – Virtual Embedded Block

2. The data obtained in 1 are comparable to existing FPGA devices.

3. The model can allow the reuse of existing CAD tools, such as synthesis tools,

place and route tools, and mapping tools as much as possible.

4. The approach can provide sophisticated fine-grained model which is similar to

the one used in commercial FPGA and still allows flexibility in creating cus-

tomised coarse-grained model.

5. The model can allow rapid assessment such that “parameter sweep” architecture

exploration approach is possible.

VPR [Betz 97, Luu 09] modelling flow has been widely employed to perform FPGA

architecture modelling and the associated CAD research. VPR allows users to model

arbitrary fine-grained architecture and routing of island-style FPGA. However, VPR

does not consider some of the issues such as 2, 3 and 4. It results in unjustified com-

parison with existing FPGA. To address these issues, we propose a device and vendor

independent methodology for rapid assessment of the effects of adding embedded

elements to an existing FPGA architecture. The key element of our methodology is

to adopt Virtual Embedded Blocks (VEBs), created from the FPGA’s logic resources,

to model the placement, delay and power consumption of the embedded block to be

included in the FPGA fabric. Using this method, the benefits of incorporating em-

bedded elements in improving application performance and reducing area and power

usage can be quickly evaluated, even if an actual implementation of the element is

not available. In addition, most commercial quality CAD tools are allowed. There-

fore, we can achieve commercial quality timing and area results. For example, some

optimisations such as retiming are possible during the synthesis stage. A summary of

how the proposed methodology addresses those issues is provided in Section 3.6.

To measure the accuracy of this approach, block multipliers are modelled using VEBs

and compared with FPGAs having this feature. A study of the benefits of double preci-

sion floating point embedded blocks is also made as an initial attempt to explore how

3.2 Overview 51

embedded FPUs affect the performance of FPGA. Using this approach, the speedup

of an application as a function of the speed of the embedded block can be easily

quantified, and these studies are made for some of the benchmarks.

While this approach is adopted to model the reconfigurable architecture for floating

point computation, the idea of VEB can generally be applied to model arbitrary em-

bedded block. This chapter aims at provide a general overview of the VEB flow which

is not limited to embed FPU or multiplier. We provide specific examples on how to

use VEB flow to emulate an FPGA which has FPU embedded blocks and compare with

the existing counterpart without FPU.

In this chapter, Section 3.2 describes how the idea of VEB can be implemented on a

general manner. It is followed by vendor specific procedure on how to create VEBs

in Section 3.3 for both Xilinx and Altera devices. A verification scheme on how to

measure the accuracy of the model and the results is illustrated in Section 3.4. The

results of embedded various embedded multiplier and FPUs are described in the same

section. The discussion and comparison to another mainstream FPGA architecture

exploration tool such as VPR is presented in Section 3.5.

3.2 Overview

3.2.1 VEB Model

The basic strategy is to use the logic resources of an existing FPGA to match the ex-

pected position, area, and delay of an ASIC implementation of an embedded block

(EB). We address the existing FPGA as host FPGA since it offers a template to model

arbitrary embedded block on top of it. The model of an ASIC EB, including area

and critical path parameters, can be obtained from implementing the circuit or from

published ASIC EB information. The matching could be achieved using appropriate

vendors’ tools such as Xilinx ISE or Altera Quartus II. In order to estimate its perfor-

52 Chapter 3 – Virtual Embedded Block

Distributed VEBs in a virtual FPGA
Embedded Block in ASIC

tpd

L

W

Equivalent VEB using LC

L'

W
'

WL ≈ W' L'

tpd ≈ tpd'

tpd'

Figure 3.1: Modelling embedded elements in FPGAs using Virtual Embedded Blocks.

mance, the EB is modelled using logic cell resources in VEBs. Our model of an FPGA

with VEBs is called a virtual FPGA as illustrated in Figure 3.1.

Area

To employ this methodology, area and delay models for the EB are required. The area

model is translated into equivalent logic cell resources in the virtual FPGA. In order to

make this translation, an estimate of the area of a logic cell in the FPGA is required,

this value including the associated routing resources and configuration bits. All area

measures are normalised by dividing the actual area by the square of the feature size,

making them independent of feature size. VEB utilisation can then be computed as

the normalised area of the EB divided by the normalised area of a logic cell. This value

is in units of equivalent logic cells and the mapping encourages thinking about EBs in

terms of FPGA resources. In addition, special consideration is given to the interface

between the LCs and the VEB to ensure that the corresponding VEBs have sufficient

I/O pins to connect to the routing resources. This can be verified by keeping track of

the number of inputs and outputs which connect to the global routing resources in a

LC. For example, if a logic cell only has 2 output, it is not possible to have a VEB with

an area of 4 LCs that requires 9 outputs. For such a case, the area is increased to 5

LCs.

Delay

In order to accurately model the delay, both the logic and the wiring delay of the

3.2 Overview 53

virtual FPGA must match that of the FPGA. The logic delay can be matched by in-

troducing delays in the VEB which are similar to those of the EB. In the case of very

small VEBs, it may not be possible to accurately match the number of I/O pins, area

or logic delay and it may result in some inaccuracies. A complex EB might have many

paths, each with different delays. In this case, we assume that all delays are equal to

the longest one (i.e. the critical path) as it is the most important characteristic of an

EB in terms of timing.

In our implementation, area matching is done by creating a dedicated scan-chain

using shift registers. A longer scan-chain consumes more LC and therefore the VEB

is larger. As the growth of area is linear with the scan-chain, an efficient search

algorithm can be used to automatically generate a VEB as described in Section 3.2.2.

There are many options available to match the timing of a VEB. We utilize the fast

carry-chains in most FPGAs to generate delays that emulate the critical path in a VEB.

This choice has the added advantage that relocation of LCs on the FPGA does not

affect the timing of this circuit. Similar to a scan-chain, the growth of delay is linear

with the carry-chain, so the same search can be applied to determine the required

length automatically.

It should also be noted that the use of the carry-chain and scan-chain allows delay

and area to be varied relatively independently. However, modelling wiring delays is

more challenging, since the placement of the virtual FPGA must be similar to that of

an FPGA with EBs to ensure that their routing is similar. This requires that:

1. The absolute location of VEBs matches the intended locations of real embedded

blocks in the FPGA with EBs.

2. The design tools are able to assign instantiations of VEBs in the netlist to physi-

cal VEBs while minimising routing delays.

Requirement (1) is addressed by locating VEBs at predefined absolute locations that

matches the floorplan of the FPGA with coarse-grained units. To address (2), the

54 Chapter 3 – Virtual Embedded Block

assignment of physical VEBs is currently made by two-phase placement strategy which

consists of unconstrained placement followed by manual placement. We first assume

that the VEB can be placed anywhere on the virtual FPGA so the place and route

tools can suggest the most suitable location for each VEB. Once the suggested VEB

locations are known, a manual placement is applied to ensure that the placement of

each VEB is aligned on dedicated columns while maintaining nearest displacement to

the suggested location. We believe this strategy can provide a reasonable placement

as the location of each VEB is derived from the suggested placement.

Power

Let Pf gu be the power dissipation of fine-grained unit and let Pveb be the power dissi-

pation of VEB. The dynamic power dissipation (Pall) of a virtual FPGA can be repre-

sented by the following equation:

Pall = Pf gu+ Pveb + Pr (3.1)

In the proposed flow, Pf gu is estimated using a spreadsheet approach, and Pveb is deter-

mined using an ASIC power estimation tool. However, neither Pveb nor Pf gu account

for the power dissipation in routing resources between VEB and fine-grained units.

We introduce Pr which represents this power which can be obtained by modelling the

output loading of the VEB.

In order to employ the proposed power estimation flow, the following assumptions

are made and justified as follows:

1. The process technology used in building the VEB should be similar to that of the

fine-grained unit. With similar transistor size, the area and delay of the units

can be directly compared. Moreover, transistors with similar size have similar

capacitance which is a critical factor when estimating power consumption.

2. Constant activity rates are assumed on all the nets in a design. This allows us to

3.2 Overview 55

rapidly estimate the power consumption without estimating activity rate using

post-place and route simulation.

3. Apart from logic cells, registers and embedded blocks, there are several com-

ponents which may affect the dynamic power consumption in an FPGA. Such

components include I/O cells and clock management units. In this study, we

assume all hybrid FPGAs share the same architecture so the dynamic power

consumption of these components is the same. Only the dynamic power dissi-

pated in computation cores are considered in the estimation.

Given the area of fine-grained units and the operation frequency, the power con-

sumption of the fine-grained units can be determined by a commercial FPGA power

estimation tool as the fine-grained unit has the same architecture as the commercial

one. A high level power estimation, which assumes a constant toggle rate of all nets,

is employed to obtain the dynamic power dissipation of fine-grained units. Similar to

estimating the power consumption of the fine-grained unit, the power consumption of

VEB can be obtained from an ASIC power estimation tool, assuming a fixed operation

frequency and toggle rate for all the nets.

The dynamic power consumption of the routing resources between the VEB and fine-

grained unit can be modelled by setting the appropriate output loading of the VEB.

A calibration scheme is proposed to determine the output loading. The dynamic

power consumption of an existing embedded block in a commercial FPGA is first

measured. An equivalent embedded block is then implemented with standard cell

design flow and the dynamic power consumption is assessed assuming no loading

at the outputs. Then the output loading of the embedded block is increased until the

dynamic power consumption matches the commercial FPGA. This value represents the

average loading of the routing resources and is applied to the output of the VEB. The

dynamic power consumption of the routing resources can be obtained from the ASIC

power estimation tool. The high level estimation of the dynamic power consumption

of the hybrid FPGA can be obtained by combining both numbers.

56 Chapter 3 – Virtual Embedded Block

The same approach can be applied to energy consumption or the power-delay product

which are often better metrics for FPGA architectures than power consumption.

The major issue concerning the proposed approach is accuracy. There are several

contributing factors: (1) assumption of constant switching activity rate and (2) the

uncertainty of the power dissipation in routing resources. To address (1), we can

estimate the power consumption under different switching activity rates to measure

the lower and upper bounds for the power consumption. To address (2), we propose

a calibration scheme which adjusts the output loading of the VEB.

The use of VEB to measure power consumption of proposed FPGA architecture is

described in chapter 5 in greater detail.

3.2.2 VEB generation tool

A VEB generation tool is developed to automate generation of VEBs. This tool can

support different vendors and device families through a device dependent interface.

It accepts entity configuration, timing, aspect ratio and area of a desired embedded

block as input arguments and produces a synthesisable VEB design that meets these

parameters. This is done using an iterative algorithm that matches the required pa-

rameters to within a desired error.VEB SizeVEB delayVEB entityHost FPGA device Binary Search Algorithm VEB in HDLSynthesis/Place and Route Scripts
Vendor SynthesisVendor Place and RouteResults Parser Results in Vendor specific format

HDL Synthesis, Place and Route Scripts GeneratorVEB GenerationTools
Figure 3.2: The block diagram of the VEB design flow

A block diagram of the generation tool is shown in Figure 3.2. The modules include a

HDL implementation script generator, search and implementation result parser. Users

3.2 Overview 57

can specify parameters for the VEB design flow including the expected area and delay,

acceptable error, aspect ratio as well as the host FPGA family. Based on these parame-

ters, the script generator produces the corresponding HDL and implementation script

for a specific vendor design suite. The implementation script is then executed, serv-

ing to run synthesis, place and route and timing analysis. Upon completion, the result

parser obtains the VEB area and speed from the tool’s result files and passes them

to the search algorithm. The search algorithm iteratively increases or decreases the

size of the carry-chains and scan-chains until the desired area and delay are obtained.

In order to support different vendor’s design flows, the script generator and results

parser are customised for different vendors.

The search algorithm is based on binary search where the upper values of the size

of the chains are required. The algorithm first determines an upper value for the

chain size by doubling its size until the implementation exceeds the desired delay or

area. The search algorithm uses an initial carry-chain and scan-chain of 10 and 1

respectively. A binary search algorithm is then applied to obtain the chain size that

best matches the desired delay. As the size of carry-chain affects the area of the VEB

and the size of scan-chain does not affect the delay, both carry-chain and scan-chain

can meet the user requirement by matching the carry-chain first followed by scan-

chain.

There may be some cases that both area and delay cannot be matched using logic cells.

For examples, if the required delay is too small that even combinatorial delay of a LUT

is larger than the required one, such VEB cannot be made using this methodology.

This case seldom occurs since an embedded block usually has more complex function

than a LUT and therefore the delay should be larger. If the area is too small while the

required number of I/O pins is too large, VEB methodology may not match the area

since each logic cell has limited number of I/O only. We can apply post-adjustment to

obtain the effective area consumption as illustrated in Section 3.3 in this case.

58 Chapter 3 – Virtual Embedded Block

3.3 Vendor Specific Design Flow

ASIC Design

Entity (e)

Area (a)

Delay (d)

Process Technology (T)

VEB

Generator

VEB of the

ASIC Design

Normalisation

(a a’)

(d d’)

Host FPGA template (physical

area, technology process)

Figure 3.3: Phase 1 – VEB creation flow.

VEB of the

ASIC Design

User

application

circuit

Vendor CAD tools

(Synthesis, Place

and route, Timing

analysis)

Area, Delay of

FPGA with

VEB

User

Constraints

Figure 3.4: Phase 2 – VEB integration flow.

There are two phases in the VEB design flow. The first phase is to create a VEB block

based on the ASIC design. The VEB generation tool discussed in 3.2.2 has discussed

how a VEB blcok is generated. Figure 3.3 captures the design flow of this phase.

The second phase, as illustrated in Figure 3.4, is to apply VEB to model an FPGA

with arbitrary embedded blocks. While we have VEB generation tools to produce VEB

automatically, users are required to manually integrate VEB into host FPGA since the

existing vendor tools are not supposed to support it.

As an example to demonstrate the use of VEB design flow, this section illustrates

how a VEB can be used to model a real embedded multiplier block, using Xilinx

3.3 Vendor Specific Design Flow 59

Virtex II and Altera Stratix devices as case studies. All of the results described in

this work are obtained using the Synplicity Synplify Premier 9.0 synthesis tool and

the Xilinx ISE 9.2 or Altera Quartus 6.0 design tools. The Synplicity synthesis tool is

used to demonstrate our methodology is compatible with current FPGA development

practices, and allows for advanced optimisation such as retiming and pipelining to be

applied.

3.3.1 VEB Parameters Estimation

This section covers the first phase of VEB flow. We explain how to obtain the pa-

rameters required to create a VEB. We begin with logic cell area estimation for both

devices. The physical die area of the Virtex device is reported in [Saab 05, Yui 02]

and in this study, the value reported in [Yui 02] is used. We assume 70% of the total

die area is used for logic cells and their associated routing while the other area is I/O

pads, block memories, block multipliers, etc. As the area of a Stratix device is undoc-

umented, we assume the area of a LC in the Stratix device is the same as the Virtex

II one. Table 3.3 shows a number of logic cell area estimates. The area estimates for

the embedded blocks studied are given in Section 3.4.

To model the area of the embedded multipliers on each device, we assume that they

occupy a total of 2% of the die area which, in turn, is reported to be 93 mm2 [Yui 02].

This translates to a normalised EM area of approximately 2,751,000, which is 6 LCs.

Assuming each LC has 4 input and 2 outputs, one embedded multiplier is equivalent

to 18 LCs such that all the connection from embedded multiplier can be connected.

We also assume the multiplier in Stratix device has the same size as the one in Virtex

II device.

The combinatorial logic delay of an adder carry-chain in Virtex II device can be mod-

elled by tpd = Topc y+
N−4

2
×Tb yp+Tciny , where N is the length of the adder carry-chain,

Topc y is the combinatorial delay from the input to the COUT output, Tb yp is the com-

60 Chapter 3 – Virtual Embedded Block

Delay name Description delay (ns)

Topc y F to COUT 0.665
Tb yp CIN to COUT 0.084
Tciny CIN to Y via XOR 0.940
Tmul t Embedded multiplier 4.660
Tmul tck Registered embedded multiplier 3.000
Td yck Register setup and hold time 0.293

Table 3.1: Delay parameters for Virtex II-6 devices.

binatorial delay from CIN to COUT, and Tciny is the combinatorial delay from CIN to

the Y output via an XOR gate. If the output is latched, the setup and hold time of a

register (Td yck) should be added to this value. Typical values for these parameters in

the Virtex II adder carry-chain and multiplier block are extracted from vendor’s timing

analysis tool and given in Table 3.1.

As an example, to model a registered multiplier block with delay of 3 ns, N = 30

gives a logic delay (including setup and hold time) of 2.99 ns. In the Xilinx device,

the carry-chains run along the columns. One issue to note is that the carry-chain only

runs in a single direction in the device and breaking the carry-chain introduces a long

wiring delay. In our current approach, a certain amount of trial-and-error is required

to achieve a given delay.

Although there is no official documentation suggesting the timing model of the carry-

chain in Stratix device, the vendor has disclosed typical values for some common

functions and they are listed in Table 3.2. One advantage of the VEB model is that

even if no clear documentation available from the device vendor, it is still possible to

accurately model the time and delay by adjusting the size of carry-chain and scan-

chain.

An 18-by-18 multiplier has 36 output pins and each LC has 2 output pins. This means

that we would need at least 18 LCs for our VEB model. Although the difference in area

does not affect the logic delay in a VEB model, the routing delays are slightly longer

when the wires are routed through more LCs. More LCs in the actual VEB model

3.3 Vendor Specific Design Flow 61

Delay name Description delay (ns)

Tlut LUT delay 0.469
Tsu Setup time 0.010
Th Hold time 0.100
Tadd16 Registered 16 bit counter 2.369
Tadd64 Registered 64 bit counter 3.441
Tmul t Registered Embedded Multiplier (18x18) 4.212

Table 3.2: Delay parameters for Stratix-6 devices.

Device LCs/LB Area/LB Feature Size Normalised LC area
L A (µm2) f (µm) (N = A/L f 2)

Virtex II 3000
[Saab 05] 8 71, 429× 0.7 0.15 277,779

Virtex II 1000
[Yui 02] 8 72, 782× 0.7 0.15 283,045

Stratix - - 0.13 283,045

Table 3.3: Estimates of logic cell area including configuration bit, buffer and intercon-
nect overheads. There is no public information about the die area of Stratix device
so we assume that it has the same normalised LC area as the one in Virtex II 1000
device.

also means that the resulting area is different from the real embedded multiplier. We

apply post-adjustment to compensate for this effect by using the larger area model

for timing analysis and then refining the area estimate by deducting the difference

between VEB area model and the actual area.

For example, if we implement a circuit which instantiates 4 virtual multipliers on the

virtual FPGA and the reported area is 144 LC. It means the effective area of the circuit

is 72 LC after post-adjustment. It is because each multiplier consumed 18 LCs only.

To obtain the timing of a real embedded multiplier, it is implemented and the register-

to-register delays reported by the vendor’s timing analysis tools extracted. The delays

are 4.29 ns and 4.21 ns for Virtex II and Stratix devices respectively.

62 Chapter 3 – Virtual Embedded Block

3.3.2 Integration into Xilinx Tools

This section covers the second phase of the VEB design flow, while focusing on the

Xilinx tool chain. To integrate our design flow into the Xilinx tools, the VEB is im-

plemented using relationally placed macros (RPMs) which allow placed sub-circuits

to be defined [Xili 04]. During HDL generation of the VEB, a vendor-specified user

constraint file (UCF) is created to define the placement of the VEBs, an example being

shown below.

Xilinx user constraint file.

1 AREA_GROUP "AG_mul18" RANGE = SLICE_X10Y17:SLICE_X13Y4 ;

2 INST "/" AREA_GROUP = "AG_mul18" ;

Several options need to be specified during synthesis to avoid unwanted optimisation

by the synthesis tools. In order to instruct the synthesis tools inferring registers in

the logic cell rather than those in memory, the syn_srlstyle attribute must be

specified as register. Automatic I/O insertion, pipelining and retiming must also

be disabled and, during the place and route process, the trim unconnected logic

option must also be disabled. The VEB generation tool encapsulates these all of these

steps as discussed in Section 3.2.2.

After the VEB has been placed and routed, another constraint file containing the rel-

ative placement information for each LC in the VEB is generated. The placement

information and the netlist for the VEB are compiled to create a RPM.

To employ the VEB in an application, the HDL description is modified to instantiate

the corresponding VEB block. Since the VEB is considered as a black box during

synthesis, timing information must also be specified to allow the synthesis tool to

take timing of the block into account during optimisation. This makes optimisations

such as retiming possible. During place and route of the benchmark circuit, the VEBs

are placed in regular locations on the FPGA, modelling the expected locations of the

EBs. This is achieved using placement constraints. The design is then placed and

3.3 Vendor Specific Design Flow 63

routed in the usual fashion and timing analysis applied to produce area and timing

results.

3.3.3 Integration into Altera Tools

This section covers the second phase of the VEB design flow, while focusing on the Al-

tera tool chain. We illustrate our approach using the Altera tools in a similar manner.

The LogicLock feature is employed to group logic cells. For synthesis, we use Synplic-

ity Synplify and the same options as for Xilinx are used except the target device.

During place and route of the VEB, all LogicLock settings are specified in a Tcl script.

One key precaution is that once we place the LogicLock region in the design, we are

not allowed to optimise the circuit as the placer may potentially modify the LogicLock

region by trimming unnecessary logic. Therefore options such as register duplication,

register retiming, packing register to I/O pads have to be disabled for placement.

The following settings are used:

Altera Tcl script for setting logic lock.

1 # logic lock assignment

2 initialize_logiclock

3 set_logiclock -region veb_fpu_lock -floating true -height 16 -width 7

4 set_logiclock_contents -region veb_fpu_lock -to *

5 # compile

6 execute_flow -compile

7 # export desgin

8 logiclock_back_annotate -region veb_fpu_lock -lock

9 logiclock_export -file veb_fpu_lock.qsf

Once the VEB is created as a LogicLock component, the VEB can be imported in a

design and placed and routed in the normal fashion. Timing and area results can be

obtained via the timing analyser.

64 Chapter 3 – Virtual Embedded Block

3.4 Results

3.4.1 Verification of the VEB Design Flow

In order to verify the results obtained using our methodology, we develop VEBs for

embedded 18×18 multiplier (EM) on the Virtex II and the Stratix devices. Since such

embedded multipliers are found in those FPGA devices, it is possible to compare the

routing and logic delays of benchmark circuits from the VEB design flow with those

given by the actual EMs.

The benchmark circuits are implemented both using the EMs and the VEB multiplier.

Table 3.4 and 3.5 summarises the resource utilisation and critical path delay for both

implementations on Xilinx and Altera devices respectively. First considering the criti-

cal path delay, the difference between the real FPGA and the virtual one is less than

12%. For most of the circuits, the critical path passes through the multiplier. In those

cases where it is not, the longest delay through the multiplier is very close to the

critical path of the circuit.

The table also shows that retiming can be used in the VEB methodology. Retiming the

bgm circuit can achieve additional speedup of 1.27 on the Virtex II device and 1.32

on the Stratix device. The bgm benchmark shows a lower error than the other circuits

on both devices because the critical path does not involve the EMs but rather is in the

delay of the accumulator plus rounding logic after the summation.

The relative error for the Stratix device is larger than Virtex II device and is largest

(11.94%) when a large number of multipliers are instantiated. We believe this is

because of an inaccurate estimate of the size of the embedded multiplier for Stratix.

The inaccurate estimation in the physical area of the embedded block may result

in longer or shorter routing delay. The difference in error between Virtex II device

and Stratix device suggests that we have a better estimation of the size of embedded

multiplier in Virtex II device than the Stratix one. As a result, when many multiplier

3.4 Results 65

blocks are instantiated, the routing delay wire may be different to the real embedded

multiplier.

Benchmark
Size (logic

cell)
of
EMs

EM delay
(ns)

VEB delay
(ns)

Difference
(ns)

Difference
(%)

bfly 1,240 4 4.97 5.25 0.28 5.63%
dscg 350 4 4.53 4.79 0.26 5.74%
fir4 384 4 4.53 4.79 0.26 5.74%
mm3 1,366 3 4.73 4.79 0.06 1.27%
ode 404 2 4.54 4.79 0.25 5.51%
mul34 352 4 8.77 8.38 0.39 4.45%
mul68 1,728 16 9.75 9.13 0.62 6.36%
mul136 6,512 64 11.98 11.67 0.31 2.59%
bgm 6,684 46 11.63 11.29 0.34 2.92%
bgm∗ 6,954 46 9.11 9.07 0.04 0.44%

Table 3.4: Summary of resource utilisation and critical path delay for embedded mul-
tiplier (MULT18X18S) and VEB implementations on an Xilinx XC2V6000-FF1152-6
device. An asterisk (∗) indicates that retiming is enabled during synthesis.

Benchmark
Size (logic

cell)
of
EMs

EM delay
(ns)

VEB delay
(ns)

Difference
(ns)

Difference
(%)

bfly 942 8 8.14 8.91 0.77 9.46%
dscg 312 8 4.21 4.51 0.30 7.13%
fir4 354 8 4.21 4.53 0.32 7.60%
mm3 644 6 8.76 9.45 0.69 7.88%
ode 303 4 5.05 5.44 0.39 7.72%
mul34 199 8 8.93 8.26 0.67 7.50%
mul68 1,074 16 9.40 10.28 0.88 9.36%
mul136 3,667 128 11.81 10.40 1.41 11.94%
bgm 4,070 92 10.96 11.12 0.16 1.46%
bgm∗ 5,822 92 8.29 8.51 0.22 2.65%

Table 3.5: Summary of resource utilisation and critical path delay for 18x18 embed-
ded multiplier in DSP block and VEB implementations on an Altera EP1S80F1508C6
device. An asterisk (∗) indicates that retiming is enabled during synthesis.

Table 3.6 shows the breakdown of the critical path into logic and routing delays for the

EM implementation. The corresponding path in the VEB implementation is identified

and shown in the same table. The sum of the logic and routing delay for the EM

should be equal to the corresponding value in Table 3.4, but due to clock skew it is

slightly different. The logic delays between the two implementations are very similar.

The routing delays differ greatly because the EM and VEB implementations often

have different placement, but since the nets are not on the critical path in the VEB

implementation, they do not affect the maximum operating frequency of the circuit.

66 Chapter 3 – Virtual Embedded Block

Benchmark
EM delay

Equivalent VEB
path delay Difference

logic routing logic routing logic logic routing routing
(ns) (ns) (ns) (ns) (ns) (%) (ns) (%)

dscg 3.449 1.150 3.445 1.536 0.004 0.116% 0.386 25%
fir4 3.449 1.167 3.445 0.815 0.004 0.116% 0.352 43%
ode 3.449 0.911 3.445 0.672 0.004 0.116% 0.239 36%
mm3 3.449 1.366 3.445 1.067 0.004 0.116% 0.299 28%
bfly 3.449 2.062 3.445 1.411 0.004 0.116% 0.651 46%
mul34 8.818 2.345 8.990 2.202 0.172 1.913% 0.143 6%
mul68 8.682 3.687 8.990 4.960 0.308 3.426% 1.273 26%
mul136 8.682 5.950 8.990 4.258 0.308 3.426% 1.692 40%
bgm 10.119 3.901 10.019 1.916 0.1 0.998% 1.985 104%
bgm∗ 8.439 3.155 7.631 3.971 n/a n/a n/a n/a

Table 3.6: Breakdown of critical path delay for embedded multiplier and VEB imple-
mentations on a XC2V6000 device. bgm∗ indicates that retiming is enabled during
synthesis.

It would be possible to also match the routing delays by locking placement of all of

the LCs in the design rather than just the VEB, if closer matching of the routing delays

is desired.

3.4.2 Embedded Floating Point Unit

This section demonstrates the modelling of an embedded floating point unit (FPU) on

an FPGA. The area and delay model of a VEB FPU is made based on area and speed

estimates of the Blue Gene ASIC [Brig 05, Wait 05]. This is a full-functional FPU

fabricated in a similar technology (0.13µm) to the Xilinx Virtex II. It operates at a

clock frequency of 700 MHz, with an area estimated to be 4.26 mm2 [Brig 05] which

translates to 905 LCs on both FPGA devices. The area estimate is very conservative,

since we expect an FPU embedded on an FPGA would be less complex than the Blue

Gene ASIC.

As the Blue Gene 700 MHz FPU design has a much smaller logic delay than the routing

delay of the FPGA, a better implementation can be obtained by reducing both its

latency and clock frequency by a factor of 5. Thus the VEB FPU considered has a

clock frequency of 140 MHz with (7.14ns) a one cycle latency. This essentially trades

3.4 Results 67

FPGA VEB Improvement

EMs

through-
put (#

of
cycle)

size
(LC)

delay
(ns) FPUs

through-
put (#

of
cycle)

size
(LC)

delay
(ns)

Area Speedup

bfly 36 1 27,576 24.35 8 1
7,328 +
4,490

7.62 2.33 3.20

dscg 36 1 19,408 22.84 6 1
5,496 +
1,192

7.34 2.90 3.11

fir4 36 1 22,966 22.35 7 1
6,412 +
1,442

7.32 2.92 3.05

mm3 27 225 17,714 23.35 5 45
4,580 +
3,600

7.58 2.17 15.40

ode 18 20 15,886 22.19 5 4
4,580 +
1,224

7.62 2.74 14.60

Geometric Mean: 2.59 5.84

Table 3.7: FPGA implementation results for floating point benchmark applications
on a Xilinx XC2V6000-6-FF1152 device. The VEB size is given as the FPU area (in
equivalent LC resources) plus the LC resources needed to implement the rest of the
circuit. The second column (EMs) indicates number of MULT18X18S instantiated.

FPGA VEB Improvement

EMs

through-
put (#

of
cycle)

size
(LC)

delay
(ns) FPUs

through-
put (#

of
cycle)

size
(LC)

delay
(ns)

Area Speedup

bfly 96 1 22,498 25.47 8 1
7,328 +
2,638

9.60 3.07 2.65

dscg 96 1 16,959 26.49 6 1
5,496 +

880
7.89 3.09 3.36

fir4 96 1 17,977 28.73 7 1
6,412 +

983
7.61 2.80 3.77

mm3 78 225 13,812 26.22 5 45
4,580 +
1,782

12.07 3.02 10.87

ode 52 20 11,902 23.18 5 4
4,580 +

794
7.97 2.60 14.54

Geometric Mean: 2.91 5.56

Table 3.8: FPGA implementation results for floating point benchmark applications on
an Altera EP1S80F1508C6 device. The VEB size is given as the FPU area (in equivalent
LC resources) plus the LC resources needed to implement the rest of the circuit. The
second column (EMs) indicates number of 9x9 multipliers instantiated.

68 Chapter 3 – Virtual Embedded Block

off clock frequency for reduced latency.

The performance of the Virtex II FPGA and Stratix FPGA is compared to a corre-

sponding virtual FPGA with embedded FPUs using the floating point benchmarks. A

summary of the results is given in Table 3.7 and Table 3.8. Since VEB FPU has reduced

latency, the speedup on certain benchmarks which requires data dependency is not

only because of the increase in clock rate but also the improvement in throughput.

For examples, the throughput of benchmark circuits mm3 and ode has improved by 5

times when embedded FPUs are introduced so the overall speedup is 10.87 times and

14.54 times respectively. It is more than the relative difference of the delay.

The results show that augmenting the FPGA with embedded FPUs leads to an average

improvement in area and speedup by factors of 2.59 and 5.84 respectively on the

Virtex II device. Similar improvement is obtained in Stratix device where the area

is reduced by 2.91 and speedup is 5.56 on average. The overall improvements in

area and speedup are 2.75 and 5.7 respectively. In contrast, a recent investigation

of embedding double-precision FPUs in FPGAs based on VPR with a different set of

benchmarks results in estimates of average area savings of 2.21 times and 1.33 times

in clock rate over existing architectures [Beau 08]. We attribute the differences to:

different benchmarks being used, CAD tools, FPU delay and latency, FPGA model and

the use of retiming optimisations during synthesis.

3.4.3 Exploration of Technology Trends

The VEB design flow can be used to (1) obtain a single performance estimate for intro-

ducing embedded blocks, (2) analyse performance/area trade-offs, and (3) determine

the EM speed required to meet a given system performance.

In one experiment, we use VEB to implement virtual embedded multiplier with dif-

ferent delays and observe how the delay of multiplier affects the overall performance

of the bgm circuit. We assume the virtual embedded multipliers have constant area

3.4 Results 69

to minimise the routing effect. We generate five virtual embedded multipliers. The

baseline virtual embedded multiplier has the same delay as the real one (4.66ns).

The delay of subsequence virtual embedded multipliers are reduced gradually until

the limit of the host FPGA itself.

The virtual embedded multipliers are than used to implement the bgm circuit using

the vendor design flow and results are collected. Retiming is used in such experi-

ments since, for pipelined designs, improving the performance of one pipeline stage

can create slack in another stage, moving the bottleneck to a different stage of the

pipeline. A similar situation occurs in multi-cycle designs.

The results are shown in Figure 3.5. An EM performance of 1 is the same as the

performance of the Xilinx EM, and a normalised system performance of 1 corresponds

to the execution time of the bgm benchmark. From this figure, one can determine

the maximum speedup that can be achieved in this application via faster EMs to be

approximately 1.4, which can be obtained by speeding up the block multiplier in

Virtex II devices by 2.2 times.

As an example of estimating system performance of a design fabricated in a differ-

ent process technology, consider a 16× 16 bit combinational multiplier operating at

1 GHz with an area of 0.474 mm2 at 1.3 V in 90 nm technology [Hsu 06]. Assum-

ing velocity saturated general scaling of transistor lengths from 90 nm to 0.13 µm

(1/S = 0.13/0.09), the delay would scale by 1/S, i.e. from 1 ns to 1.44 ns [Raba 02].

The scaled area of the implementation would be 132 LCs. Such an implementation is

thus 1.44 times faster but uses 3.6 times more area than the Xilinx EM, and improves

bgm performance by 15%.

Experiments are conducted to assess the impact of embedded block performance on

system performance. Specifically, we study the speedup of the bfly benchmark as a

function of the FPU performance (Figure 3.6). We generated 7 virtual embedded FPUs

with various delay. And each virtual embedded FPU are used to implement the bfly

circuit.

70 Chapter 3 – Virtual Embedded Block

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.00 1.50 2.00 2.50 3.00

N
o

rm
a

lis
e

d
 S

y
s
te

m
 P

e
rf

o
rm

a
n

c
e

Normalised EM Performance

Figure 3.5: Performance of fixed-point bgm benchmark with different VEBs, with
retiming.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1 1.5 2 2.5 3

N
o

rm
a

lis
e

d
 S

ys
te

m
 P

e
rf

o
rm

a
n

c
e

Normalised FPU Performance

Figure 3.6: Performance of floating-point bfly benchmark with different FPU delays,
with retiming.

We assume the bfly circuit always operates in fully-pipelined manner even if each

virtual embedded FPU has different pipeline stages. It can be seen that a modest

improvement in FPU speed can lead to a large improvement in the bfly benchmark:

for instance improving the FPU performance by 30% improves bfly performance by

40%. Beyond a factor of 1.4, the speedup of the benchmark increases rather more

slowly. This type of information can be used to determine the best option for ASIC

implementations of EBs in which the synthesis tools offer a wide range of possible

area/delay trade-offs.

3.5 Discussion 71

3.5 Discussion

The methodology proposed in this work shares some similarities with the VPR, a pop-

ular CAD tool for architectural exploration of island-style FPGAs in academic research.

The key differences among the methodologies, including the usage, the design entry,

the architecture and the flexibility, are discussed below. Table 3.9 highlights some of

their differences.

The purpose of VPR tool is to provide a flexible CAD infrastructure to evaluate the

performance, in terms of area, power and delay, of different FPGA architectures. The

tool allows different customisations of FPGA architectures. For instance, users can

configure high-level parameters such as the size of a LUT, the number of LUT inputs,

the number of LUTs in a cluster, the number of inputs to a cluster, the number of

tracks in a routing channel, the switch box topology etc. Moreover, users can specify

low-level parameters such as RC values of pass transistors, buffers, LUT and I/O pads.

These low-level parameters are usually determined by HSPICE simulation or predic-

tive model [Zhao 06] and the parameters are usually architecture and technology

dependent.

The purpose of the VEB methodology is to model arbitrary embedded elements on a

commercial FPGA. Therefore the flexibility of this model is limited by the nature of

the host FPGA. Users cannot modify the architectural parameters in the same way as

for VPR. However, users can create equivalent embedded elements which have similar

area and delay, then place and route them using vendor CAD tools and assume that

the embedded elements exist in the device. Thus a VEB model encapsulates most of

the properties of the underlying architecture.

One of the main advantages of the VEB methodology is that it can provide a rapid

evaluation for arbitrary embedded blocks. Thus it can be used to rapidly identify

which embedded block is particularly useful. Further investigation can later be ap-

plied to obtain more accurate results if warranted.

72 Chapter 3 – Virtual Embedded Block

To obtain meaningful results from VPR, accurate area and delay measurements of

the target fine-grained architecture are necessary. Users are required to provide their

own specific transistor-level circuits to generate their own area, delay, resistance and

capacitance parameters relating to an architecture. This can be a difficult and time

consuming process. A more recent version of VPR [Luu 09] provides architecture

templates to alleviate the process. However, users who want to modify the fine-

grained architecture are still required to supply their own physical level parameters.

The limited access to physical level parameters of commercial FPGA devices implies

that direct comparison to commercial FPGA is very unlikely unless the vendors dis-

close such proprietary technical data to the public. VEB model, however, can in-

directly access such information through the tools offered by the vendor and thus

meaningful comparison can be made.

In terms of the design flow, VPR tools only allow BLIF format input which is usually

synthesised by SIS [Sent 92]. Odin [Jami 05] can convert Verilog description to BLIF

format. However, the tool supports RTL descriptions only and circuits described as

behavioural one has to be rewritten. Both SIS and Odin do not provide common

optimisation features such as retiming and physical synthesis, which considers the

physical placement of the logic cells and the routing resource used during synthesis.

These features usually present in commercial CAD tools but cannot be found in the

academic one.

More importantly, VPR and commercial FPGA CAD tools use different synthesis, place

and route algorithms, making comparisons more difficult. The VEB methodology, on

the other hand, is seamlessly integrated into the commercial FPGA design flow and

entry. It allows schematic as well as HDL design entry and follows the same synthesis

flow, placement and routing and timing analysis as the host FPGA.

While the VPR tool is sufficiently flexible to model island-style FPGA architectures,

several issues prohibit it to model a commercial FPGA. Despite the timing model and

the design flow as mentioned above, VPR models the Xilinx XC4000X [Xili 99] fine-

3.6 Summary 73

grained fabric which is no longer appeared in commodity commercial FPGA device.

Even though some modified versions of VPR support carry-chains, block multipliers

and block memories, we are not aware of any published results that quantify the

difference between a VPR model and a commercial FPGA.

However, there are some limitations in the VEB methodology when compared to VPR.

Beside the architecture issues mentioned above, there are certain embedded elements

that cannot be implemented as a VEB. For instance, it is not possible to accurately

model small embedded elements with large delay due to the difficulty of introducing

large delays with limited logic cells. Similarly, when the I/O to area ratio is too high,

modelling using VEBs becomes inaccurate. In such cases, it is still possible to measure

the timing by allowing a larger VEB. It should be noted that this timing may not be

accurate as longer wires are needed to route through a VEB. Our experimental results

show that this error is less than 12% for the circuits tested. Table 3.9 summarises the

differences between VEB and VPR-based models.

3.6 Summary

We propose a methodology for estimating the effects of introducing embedded blocks

to commercial FPGA devices. It is vendor independent and offers rapid evaluation

of arbitrary embedded blocks. The proposed flow can address the issues raised in

Section 3.1. Since the flow emphasises the reuse of existing CAD tools from FPGA

vendor in modelling, it can capture the area, delay and power when a particular

circuits implemented on a virtual FPGA with arbitrary embedding blocks (Issue 1, 3).

In addition, by using vendor tools as media in modelling, we can assume the same

fine-grained architecture as existing FPGA device and recover the associated physical

parameters indirectly, allowing the results obtained from the VEB flow are comparable

to existing FPGA device (Issue 2, 4). Using the VEB flow, we are able to perform

parameter sweep experiments as demonstrated in Section 3.4.3 (Issue 5).

74 Chapter 3 – Virtual Embedded Block

VEB VPR [Betz 97, Luu 09]

Purpose

Modelling existing
island-style FPGA with

arbitrary heterogeneous
blocks

Modelling island-style FPGA
with arbitrary fine-grained
fabric, routing architecture
and heterogeneous block

Design Entry VHDL / Verilog BLIF / Verilog
Fine-grained
Architecture

Same as existing FPGA
User-defined or based on

XC4000X FPGA device
Coarse-grained

Architecture
User-defined User-defined

Timing Model
(fine-grained

fabric)

Information provided by
vendor tools

User-defined based on their
own HSPICE model or
Predictive Technology

Model [Zhao 06]
Area Model

(fine-grained
fabric)

Derived from die area
information released by

vendors

User-defined based on their
ASIC model or Predictive

Technology Model
Timing Model

(coarse-grained
fabric)

User-defined based on their
ASIC model or published IP

information

User-defined based on their
ASIC model or published IP

information
Area Model

(coarse-grained
fabric)

User-defined based on their
ASIC model or published IP

information

User-defined based on their
ASIC model or published IP

information

Synthesis Tools
Vendor supplied synthesis

tools

SIS [Sent 92], Odin
[Jami 05] or manual

synthesis

Comparison Existing FPGA
Another FPGA model from

VPR

Benchmarks
Domain specific

applications / kernels
MCNC benchmarks

[Yang 91]

Table 3.9: Comparison of VEB and VPR.

3.6 Summary 75

The methodology is evaluated by modelling block multipliers in Xilinx Virtex II de-

vices and in Altera Stratix devices and we find that prediction of critical paths to

approximately 12% accuracy can be achieved. The methodology is then applied to

predict the impact of embedded floating point units, showing a possible reduction in

area of 2.75 times and speedup of 5.7 times.

Chapter 4

Synthesisable Datapath FPGA Fabric

4.1 Introduction

In previous chapter, we have assessed the performance of an FPGA when a whole

hardcore FPU is embedded into it. However, in most applications, it is very likely

that only part of the FPU is involved in the computation. For instance, additions and

multiplications contribute most of the computation in an application while division

and square root constitute the minority of an application.

Decomposing the FPU to smaller floating point operators and selecting suitable opera-

tors to embed into an FPGA are one of the possible solutions when designing an FPGA

device dedicated to floating point computation. However, several issues arise when

we consider the interconnection among those components. Although the intercon-

nection can be made using existing fine-grained routing resources in the FPGA, one

may consider including dedicated bus routing architecture to connect the components

together.

Apart from interconnection optimisation, certain operations other than floating point

arithmetic can be optimised. Because the nature of floating point applications, bus-

based logic contributes much more computation time than the random logic. For

4.1 Introduction 77

instance, most floating point applications involve the comparison operation and it is

essentially a fixed point subtraction and thus is bus-based logic. In addition, multi-

plexing or moving floating point data is also bus-based logic.

Bus-based logic, while appears in floating point application, can also be found in

debugging circuit in System-on-Chip (SoC) system. A key part of this embedded

debug infrastructure is the programmable logic fabric. Although it would be possible

to create a fabric based on commercial stand-alone FPGA architectures, this may not

be desirable for three reasons. First, commercial architectures are optimised for large

applications. Since the nature of debugging test circuits tends to be small, it is likely

that such architectures provide far more routing resources than are required, leading

to increased area overhead. Area overhead is especially important in our applications

since the embedded debug fabric is pure overhead and it is not used when the device

is finally operational.

Second, commercial FPGA architectures are optimised to work for a wide variety of

circuits in different applications. Since much debugging is performed by monitoring

buses, we would expect our applications to be primarily datapath-oriented. In addi-

tion, because the embedded fabric is a fixed part of an integrated circuit, the context

in which it is used (the buses that are monitored, for instance) does not change over

time. As we will show in Section 4.6, we can significantly reduce the area required by

our architecture by taking advantage of this.

Third, commercial FPGA fabrics may not work well because they are not easily synthe-

sisable by common commercial synthesis tools. Most System-on-Chip (SoC) designs

are implemented by synthesising hardware description language (HDL) specifications

into standard macrocells. The use of embedded cores are much more palatable to

SoC designers if their integration can be made as seamless as possible [Wilt 05]. We

discuss the concept of synthesisable fabrics in Section 4.2.

Other embedded fabrics have been reported. Both datapath fabrics [Cher 96, Hauc 04,

Leij 03, Ye 03, Ye 06] and coarse-grained architectures [Mars 99, Cron 99, Gold 00,

78 Chapter 4 – Synthesisable Datapath FPGA Fabric

Sing 00] may provide better density than commercial FPGAs, but still suffer in that

they are not easily synthesisable. Also like commercial FPGAs, these architectures

have been optimised for large stand-alone applications. Synthesisable programmable

logic fabrics have been described in [Wilt 05, Yan 06]. These architectures are not

datapath-oriented, and hence suffer from a significant density overhead.

This chapter describes a novel reconfigurable architecture for an embedded FPGA

fabric that has been optimised for both bus-based or datapath applications such as

debug circuits and floating point circuits. Such an architecture can also be employed

to implement other arithmetic-intensive circuits. The unique features of the proposed

reconfigurable architecture include:

1. Bus-based routing and logic which clusters the fine-grained logic and reduce the

chip area.

2. Parameterised design which allows designer to further optimise the architecture

based on domain-specific applications.

3. Module design which allows designer to embed or remove individual heteroge-

neous blocks

We compare this architecture to both a fine-grained synthesisable architecture, and

an ASIC implementation of the debug circuitry. Unlike the fine-grained architecture,

our fabric contains support for word-level operations and routing, and contains em-

bedded multipliers. Unlike the ASIC implementation, our fabric is flexible enough to

implement a wide variety of embedded applications. We show that the new archi-

tecture (including embedded multipliers) has a density similar to that of a standard

full-custom fine-grained FPGA (without embedded multipliers).

This chapter is organised as follows. Section 4.2 describes the environment in which

our embedded core will be used, and describes the requirements of our architecture.

The architecture itself is then described in Section 4.3. Section 4.4 then gives an

4.2 Overview and Architectural Requirements 79

example of how an application can be mapped to our architecture. Section 4.5 re-

ports the efficiency of our architecture as a function of various architectural parame-

ters.Section 4.6 compares our architecture to a previous synthesisable programmable

logic core, as well as to an ASIC implementation. Area, delay are power consumptions

are reported while a proof-of-concept layout is provided. Section 4.7 compares our

approach to that taken in stand-alone datapath-oriented FPGAs and coarse-grained

architectures. Finally, Section 4.8 presents concluding remarks.

4.2 Overview and Architectural Requirements

A programmable logic fabric can either be hard or soft. An ASIC designer using a hard

fabric would obtain a transistor level layout and embed it directly into the integrated

circuit. These hard fabrics could either be based on commercial FPGA designs, or

generated automatically using a layout or architecture generator [Pada 03, Comp 07,

Holl 07].

One challenge with this approach is that design tools that allow seamless integration

of fixed and programmable logic are still not mature. Timing analysis, power distri-

bution, and verification are difficult when the function to be implemented in the core

is not known.

An alternative technique has been recently described which addresses this concern by

shifting the burden from the ASIC designer to mature standard macrocell synthesis

tools [Wilt 05, Yan 06]. In this technique, an ASIC designer would obtain a synthe-

sisable version of their programmable logic fabric (a soft core) written in a hardware

description language, and would synthesise it along with the rest of the ASIC. The pri-

mary advantage of this technique is that the task of integrating such cores is far easier

than the task of integrating hard cores. The synthesis tools can be the same ones that

are used to synthesise the fixed (ASIC) portions of the chip. No modifications to the

tools are required, and the flow follows a standard integrated circuit design flow that

80 Chapter 4 – Synthesisable Datapath FPGA Fabric

designers are familiar with.

For fabric to be synthesisable in this way, it must not contain combinational loops.

Standard synthesis tools, timing analysis tools, and power estimation tools are de-

signed to optimise circuits without combinational loops more efficiently. Although

circuits with such loops can be synthesised, this usually requires the designer to manu-

ally resolve the loops by identifying some false paths. This requires considerably more

understanding about the internals of the core than a typical ASIC designer would

have. Note that a standard unconfigured FPGA contains many combinational loops.

A designer will rarely configure the FPGA to implement combinational loops, but be-

fore configuration, such loops exist. Thus, the first requirement of our architecture is

that it does not contain any combinational loops.

The second requirement of our architecture is that it is as small as possible. The area

devoted to on-chip debug is not used during the normal operation of the chip (of

course, the fabric could be removed from production versions of a high-volume chip).

Existing synthesisable fabrics suffer a 6.4 times area overhead, compared to a hard

programmable logic core [Wilt 05]. As will be shown in the next section, we address

this by taking advantage of the datapath nature of the anticipated debug circuits. In

addition, we take advantage of the fact that the context in which the core will be used

is known when the SoC is designed. As an example, if buses are connected to the

core, the specific pins on which these buses are mapped, as well as the width of each

bus, are known when the fabric is instantiated, and will not change over the lifetime

of the chip.

The third requirement is that the fabric should be as fast as possible. Ideally, we would

like to run our integrated circuit at the highest possible speed during debugging. The

nature of programmable logic means we may not be able to achieve this, but we would

like to be as close as possible to this goal. Power consumption is a secondary concern,

since the fabric will likely only be used “in the lab” during debugging. However,

if our fabric is to be used to implement other arithmetic-oriented applications in a

4.3 Architecture 81

Control Block

Status Mux Control Mux

Wordblock 0

bit 0

bit 1

bit 2

bit N-1

control status

Q D

Wordblock 1

bit 0

bit 1

bit 2

bit N-1

control status

Wordblock D-1

bit 0

bit 1

bit 2

bit N-1

control status

Output Mux

Constant

Registers (C)

Input Buses

(M)

Feedback

Registers (F)

Feedback

Mux

Output

Buses (R)

control

status

s
h
if
te
r

s
h
if
te
r

s
h
if
te
r

Figure 4.1: Fabric architecture (configuration elements not shown).

production version of an integrated circuit, then power consumption may become

important.

Our methodology provides a unique opportunity for optimisation. When designing

a hard layout for an FPGA, layout effort is reduced by dividing the design into tiles,

where each tile is identical. In our case, the tiles are synthesised and laid out auto-

matically by CAD tools; thus, it is no longer critical that each tile has to be identical.

4.3 Architecture

In this section, we describe a family of architectures for our embedded programmable

logic core. Each member of the family is differentiated by various parameters. An

SoC designer would select an architecture from this family based on the amount of

programmable logic required, as well as the number and nature of the connections to

the programmable logic.

Figure 4.1 shows our architecture. The fabric contains D identical wordblocks, each

containing N identical bitblocks. Unlike a fine-grained FPGA, the bitblocks within a

wordblock are all controlled by the same set of control bits. This means all bitblocks

82 Chapter 4 – Synthesisable Datapath FPGA Fabric

within a wordblock perform the same function. We will consider the impact of this

feature on density in Section 4.5.

As shown in Figure 4.2, each bitblock contains two lookup-tables, several multiplex-

ers, and a flip-flop. A single wordblock can implement an N bit adder/subtractor,

an N -bit wide three-input multiplexer, any other three-input logic function, or some

five-input functions. Two control inputs k1 and k2 (from the control block, to be de-

scribed below) allow for efficient implementation of multiplexers and other datapath

functions that require a control input. The same two control lines are driven to all bit-

blocks in a wordblock. The select lines of the multiplexers in Figure 4.2 as well as the

function lines of the two lookup-tables are driven by configuration bits. In total, 35

configuration bits are required per bitblock; as described above, these bits are shared

between all bitblocks in a wordblock. The wordblock also contains a programmable

shifter, which can pass data through unchanged, or shift the word one bit to the right

(signed or unsigned shift) or one bit to the left; the state of the shift block is controlled

by two configuration bits.

Each wordblock receives up to three inputs from either the M primary bus inputs, the

F feedback paths, the C constant registers, or any of the outputs of wordblocks to the

left. The control lines for the input selection multiplexers are driven by configuration

bits. Note that buses are switched as a unit; this improves density, since one set of

configuration bits can be shared among all bits. However, it also reduces flexibility,

since it is not possible to select part of one bus and part of another bus, although this

functionality can be implemented within a wordblock by careful use of a “mask” in

one of the C constant registers. The R output buses of the architecture can be selected

from the same set of M + F + C buses or from the output of any of the D wordblocks.

The same signals (except the C constants) can be fed back, through a flip-flop, to all

wordblocks; this provides a mechanism to connect wordblock outputs to the inputs

of wordblocks to the left, and also supports an efficient way to delay signals by one

clock cycle without using a wordblock.

4.3 Architecture 83

4-LUT

4-LUT

reg

ABC

Cin

Cout

control

k1
control

k2

s

cfg[1..0] cfg[33..2] cfg[34]

Figure 4.2: Bitblock (status flags not shown).

Multipliers are an important part of some target applications. Therefore, selected

wordblocks in the fabric are replaced with embedded multipliers. Each embedded

multiplier has two N -bit inputs which are selected from the M + C + F + i (where

i is the number of wordblocks to the left of the multiplier) buses using routing mul-

tiplexers. The multiplier produces two output buses, one for the high order result

and one for the low order result. These outputs can be selected by all subsequent

routing multiplexers including the output and feedback multiplexers. We denote the

number of multipliers as A, and assume each multiplier displaces one wordblock (so,

the number of wordblocks is D− A).

Although our architecture is aimed at datapath-oriented applications, a small amount

of control logic is sometimes needed to control the datapath. Such logic can be imple-

mented in the control block. This block contains fine-grained product-term based pro-

grammable logic resources, and is similar to the architecture described in [Yan 06].

The fabric contains P product-term blocks, each with 9 inputs, 10 product terms, and

3 outputs (this is shown to work well in [Yan 06]). The control block also contains

registers to support state machines. Inputs to the control block are selected from a

number of status signals generated throughout the datapath. Each wordblock gener-

ates a carry-out, an overflow, an MSB, an LSB, and a zero flag; each feedback path

generates the same flags, with the exception of the carry-out. This large numbers of

status bits are multiplexed into a small number of inputs using the status multiplexer,

84 Chapter 4 – Synthesisable Datapath FPGA Fabric

which is controlled by configuration bits. The exact number of these status bits that

can be provided to the control block depends on the size of the control block. Simi-

larly, the control block generates a number of outputs. These outputs can be provided

to various control lines in the fabric using the control multiplexer; for each control

line in the fabric, any of the control block outputs or the constants ‘0’ or ‘1’ can be

selected.

The parameters used to describe the architecture are summarised in Table 4.1.

Symbol Parameter descriptions

D Number of wordblocks (including multipliers)
N Bit Width
M Number of input buses
R Number of output buses
F Number of feedback paths
C Number of constant registers
A Number of multipliers
P Number of product-term blocks

Table 4.1: Architectural parameters.

A tool has been developed to generate synthesisable RTL description of the datapath

FPGA fabric. By supplying parameters as described in Table 4.1, a Verilog description

of the desired datapath FPGA fabric is generated. The description can be synthesised

as ASIC and the area and delay data can be retrieved from the ASIC model. The

generator allows us to produce many different datapath FPGA architectures rapidly.

It greatly reduces the time to perform some “parameter sweep” experiments such as

the one described in Section 4.5.

4.4 Example Mapping

To demonstrate how this architecture can be used to implement a circuit, we focus

on a single example. The example is a common debugging operation; the circuit

monitors two buses, and counts the number of times a certain mask (composed of 1’s,

4.4 Example Mapping 85

input bus

input bus

constant

constant

feedback

feedback

feedback

o
u

tp
u

t
b

u
s
e
s

Q D

reset

Control Block

M
A

S
K

M
A

S
K

A
D

D

A
D

D

A
D

D

Figure 4.3: Example mapping.

Bit i from Bit i from Meaning
Constant value 1 Constant Value 2

0 0 Data bit i must be 0
0 1 Data bit i must be 1
1 0 Data bit i can be 0 or 1

Table 4.2: Meaning of mask bits in the example.

0’s and “don’t care” bits) matches each bus, as well as the number of times both buses

match the mask at the same time.

Figure 4.3 illustrates how the application can be implemented. The mask value is

represented by two constants. Each bit in the constant corresponds to one bit in

the incoming data stream. As shown in Table 4.2, the two bits together determine

whether the corresponding bit in the data stream must be a ‘1’, ‘0’, or is a “don’t care”

bit. The left-most wordblock in Figure 4.3 combines the incoming data word on the

first input bus with the two constant values to determine whether the incoming data

word is a match. To do this, each of the bitblocks within the wordblock performs the

following function:

(ai + bi ⊕ di)

where ai is bit i of the first constant, bi is bit i of the second constant, and di is bit

i of the incoming data word. If the result of this function is 0, a match in bit i has

occurred. If all bits produce a result of 0, then a match has occurred. As described in

86 Chapter 4 – Synthesisable Datapath FPGA Fabric

Section 4.3, each wordblock has a “zero” flag output that is asserted when the result

from all wordblocks are 0; this flag is sent to the control block to indicate a match has

occurred. The second wordblock in Figure 4.3 performs the same function, but uses

the incoming data word on the second input bus.

The control block then uses these two match flags to determine which counters to

increment. If the first flag is set, the first counter is incremented (implemented using

the third wordblock in Figure 4.3). The second counter is incremented when the

second flag is set, and the final counter is incremented when both flags are set. Each

of the three accumulated counts is stored in the feedback registers; these counts are

fed back to the input signals of the adders. The reset control lines for the feedback

registers are also controlled by the control block. Finally, the three adder outputs are

connected to the outputs of the fabric.

4.5 Parameter Optimisation

The datapath generator allows us to design fabric with different customisations. We

want to observe how each parameters affect area in order to obtain and optimised

customisation. In this section, we first determine the impact of the parameters in Ta-

ble 4.1 on the area of the fabric. Delay and power will be considered in Section 4.6.5.

To obtain the area results, we can first use the datapath generator to create the fabric

in Verilog by supplying designated parameters. The resulting Verilog files are syn-

thesised using Synopsys Design Compiler V-2006.06. with UMC 0.13µm technology

process. The area results are retrieved from the synthesis report.

Table 4.3 shows a breakdown of the area of a fabric with N=16, D=16, M=3, R=2,

F=3, C=2, A=4, and P=4. The various components are synthesised using Synopsys

Design Compiler, and the cell area predicted by the same tool is reported. All area

values are given to three significant digits. Configuration circuits, clock circuits, and

all other essential parts of the core are included in the synthesisable model. Although

4.5 Parameter Optimisation 87

�

���

���

���

���

���

���

���

���

� � � � � � � �

1XPEHU�RI�:RUGEORFNV��'�

&
HO
O�$
UH
D�
�[
��

��
P

� �

1 ��

1 ��

1 ��

1 �

����
����
����
����
����
����
����
����
����
����
����

� � � � � �� ��

1XPEHU�RI�0XOWLSOLHUV��$�

1 ����' ��

&
HO
O�$
UH
D�
�[
��

��
P

� �

�D��,PSDFW�RI�'�DQG�1 �E��,PSDFW�RI�$

Figure 4.4: Parameter sweeps, where M=3, R=2, F=3, C=2, A=4, P=4 unless other-
wise specified.

&RQILJXUDWLRQ�6HWV�SHU�:RUGEORFN

&
HO
O�$
UH
D�
�[
��

��
P

� �

�

���

���

���

���

���

���

���

���

� � � �� ��

1XPEHU�RI�3URGXFW�7HUP�%ORFNV�LQ�WKH�&RQWURO�%ORFN��3�

' ��

' �

������

&
HO
O�$
UH
D�
�[
��

��
P

� �

�

���

���

���

���

���

���

���

1 ��

1 �

�D��,PSDFW�RI�VL]H�RI�&RQWURO�%ORFN �E��,PSDFW�RI�:RUGEORFN�JUDQXODULW\

Figure 4.5: Parameter sweeps, where M=3, R=2, F=3, C=2, A=4, P=4 unless other-
wise specified.

it would be more accurate to perform place and route on the Synopsys-generated

netlist and measure the chip area directly, [Wilt 05] have shown that the Synopsys

area results have a good correlation to the final chip area results. A 130nm process is

assumed.

As shown in the table, most of the area is used to implement the datapath portion

of the fabric. Within the datapath, the largest component of the area is due to the

routing multiplexers. The four multipliers and 12 wordblocks consume a significant

amount of area. The configuration bits within the datapath consume 6.7% of the

entire fabric.

Figure 4.4(a) shows the impact of N and D on area. In this experiment, M=3, R=2,

F=3, C=2, A=4, and P=4. As the graph shows, the area is roughly proportional to

both D and N ; increasing D increases the number of wordblocks and corresponding

88 Chapter 4 – Synthesisable Datapath FPGA Fabric

Module Area in µm2 Percentage

D
at

ap
at

h

wordblocks 86,300 23.8 %
multipliers 45,200 12.5 %
configuration bits 24,300 6.70 %
feedback registers 2,320 0.600 %
routing multiplexer 86,300 33.2 %

total datapath 120,000 76.7 %
status multiplexer 18,500 5.10%
control multiplexer 14,600 4.00%
control block 51,400 14.2%

Total 363,000 100%

Table 4.3: Area breakdown.

routing multiplexers, while increasing N increases the sizes of these blocks.

The impact on area of the number of multipliers, A, is shown in Figure 4.4(b). All

other parameters are as before, with N=16 and D=32. Intuitively, as A increases, the

area goes up. This is the case despite the fact that the area of the 32-bit multiplier is

roughly the same as the area of a 32-bit wordblock (including the associated routing

multiplexers and configuration bits). The reason that the area goes up as A increases

is that the multiplier produces two bus outputs (a wordblock produces one). This

increases the size of the routing multiplexers in all downstream wordblocks, as well

as the output multiplexers and feedback multiplexers. The graph shows that the

increase from A= 0 to A= 1 is larger than the increase from A= 1 to A= 2. This is

because if there is only one multiplier, it is placed in the left-most slot. This increases

the size of all subsequent routing multiplexers. When a second multiplier is added,

it is placed in the middle of the fabric, so only half of the routing multiplexers are

increased (those to the right of the new multiplier).

Figure 4.5(a) shows the impact of P on the area of the fabric. As one can see, the

number of product-term blocks in the control block has a significant effect on the size

of the overall architecture.

We also measure the impact of M , R, C , and F . Each of these parameters has a linear

effect on area. Increasing M from 1 to 8 increases the area by 15%, increasing R from

4.6 Results 89

1 to 8 increases the area by 7.8%, increasing F from 0 to 6 increases the area by 25%,

and increasing C from 0 to 8 increases the area by 17%. Parameter R (the number of

output buses) has the smallest effect on area, since an increase in R does not imply

an increase in the size of any of the routing multiplexers. For all other parameters,

as the parameter is increased, additional buses are created; these buses are supplied

to all routing multiplexers, making them larger. Parameter F has the largest impact

since each feedback register is associated with three status bits and one control bit.

In our architecture, the same set of 35 configuration bits is shared among all bitblocks

in a wordblock. To investigate the impact of this feature on density, we vary the num-

ber of configuration bit sets per wordblock from 1 (the baseline architecture) to N ,

in which every bitblock is controlled by a separate set of 35 configuration bits. The

impact on area is shown in Figure 4.5(b) for two values of N , with all other param-

eters the same as before. As the graph shows, more flexible architectures with more

configuration sets per wordblock require more area because of the extra configuration

bits. For N = 16, an architecture in which each bitblock has its own configuration set

is 60% larger than an architecture in which all bitblocks within a wordblock share a

configuration set.

4.6 Results

In this section, we use benchmark circuits to compare our architecture to a fine-

grained synthesisable programmable logic core [Yan 06] and to an ASIC implemen-

tation. We first describe our benchmark circuits. We then present mapping results

in terms of area, first assuming that the architecture is tailored for each benchmark,

and then assuming the more realistic case in which the fabric is not tuned for each

benchmark. Individual path delays in the fabric are assessed. Delay and power con-

sumptions are reported while using the same assumption as in Section 4.6.3. A proof-

of-concept layout is illustrated to conclude the section.

90 Chapter 4 – Synthesisable Datapath FPGA Fabric

4.6.1 Benchmark Circuits

To evaluate our architecture, we use a collection of datapath circuits. Although the

primary motivation for our architecture is to implement debug circuits, the fabric

can actually be used to implement datapath-oriented circuits. Thus, in order to fully

exercise the fabric, we have created a suite of benchmark circuits representative of

the types of circuits that would be implemented in our fabric. These circuits typically

contain a single datapath controlled by a small controller. We focus on these single

datapath circuits since circuits with multiple intersecting datapaths are likely too large

to implemented using a synthesisable core.

We use ten benchmark circuits. Three of these are example debug applications, and

the remainder are circuits that are similar in size and structure to the type of circuits

that would be implemented in our core. The first debug circuit, debug1 is the cir-

cuit described in Section 4.4. The second debug circuit, seqchk is a sequence number

checking circuit. Many packet based inter-chip communication schemes (such as PCI

Express) use sequence numbers to ensure that packets arrive in order and are not

lost. The circuit monitors incoming data words, identifies the start of a packet (us-

ing a pre-determined mask), parses through the packet (using a counter) to find the

sequence number, and compares it with the previous sequence number. Any out-of

order sequence number, which would indicate a lost packet on a direct point-to-point

link, increments a counter.

The third debug circuit, fletcher, can be used to detect checksum mismatches. In

many communication applications, when a circuit detects a checksum mismatch, it

will enter an error state and ask for re-transmission of the data. Determining that this

is happening in a chip can often be an important step in the debugging process; it can

explain low performance/throughput, it can alert the debugger that a different state

of the circuit is being stimulated, and can potentially point to overall system problems.

In its simplest form the checksum is calculated by simply adding the bytes in the data

stream. However, this allows rearranged words or extra zero bytes to pass undetected.

4.6 Results 91

The Fletcher algorithm contains an additional accumulator to help detect these error

conditions [Flet 82, Naka 88]. The benchmark circuit monitors an incoming bus, and

uses the Fletcher algorithm to compute the checksum of the incoming stream.

Of the remaining benchmarks, three, bfly, dscg and fir4 are introduced in Chapter 2.

The bfly benchmark performs the computation z = y + x ∗ w where the inputs and

output are complex numbers; this is commonly used within a Fast Fourier Transform

computation. The dscg circuit is the datapath of a digital sine-cosine generator. The

fir4 circuit is a 4-tap finite impulse response filter. The dotv3, momul, and median

circuits are constructed for this work. The dotv3 benchmark computes the dot prod-

uct of two input vectors. The egcd circuit implements an extended binary greatest

common divisor algorithm [Mene 96]. The momul benchmark is a Montgomery Mul-

tiplier [Mene 96]. Finally, the median circuit is a median filter that accepts streaming

data and returns the median (actually second-largest) of the last four entries.

All benchmarks assume 8 bit operands, except median, debug1, fletcher, and seqchk

which assume 16 bit operands. We have specifically chosen these circuits since they

are small, and support the type of application we would expect to implement on a

synthesisable programmable logic core. Large user circuits would be typically imple-

mented using a hard programmable logic core.

4.6.2 Area Results - Optimised Parameters

We first compare our architecture to a previous synthesisable architecture [Yan 06]

and to a non-programmable ASIC implementation of each circuit. This will give an

upper-bound of the efficiency of our architecture if tuned properly.

To map each benchmark to our architecture, the benchmark is first split into datapath

and control sections. The datapath portion of the circuit is mapped (by hand) to

wordblocks, and appropriate values of D, N , M , R, D, A, F , and C are chosen. The

control section is mapped to product-term blocks, using PLAmap [Chen 01]. Using

92 Chapter 4 – Synthesisable Datapath FPGA Fabric

Benchmark Fabric Parameters
D N M R C F A P

debug1 5 16 2 3 2 3 0 1
seqchk 5 16 1 1 3 3 0 2
fletcher 8 16 1 2 2 3 0 2
bfly 8 8 6 1 0 5 4 0
dotv3 5 8 6 1 0 2 3 0
dscg 8 8 3 2 0 2 4 1
egcd 27 8 2 4 1 9 0 15
fir4 11 8 1 1 4 0 0 0
median 8 16 1 1 0 4 0 2
momul 13 8 7 2 0 6 1 8

Table 4.4: Parameters used for each benchmark circuit.

Benchmark Datapath Fined-Grain ASIC Fine-Grain/ Datapath/
(ours) [Yan 06] (µm2) Datapath ASIC
(µm2) (µm2)

debug1 87,300 1,300,000 3,640 14.9 24.0
seqchk 92,500 1,200,000 3,600 13.0 25.7
fletcher 133,000 2,580,000 4,660 20.0 28.5
bfly 68,200 132,000,000 17,800 1,940 3.83
dotv3 34,100 65,500,000 8,350 1,920 4.08
dscg 72,200 116,000,000 11,600 1,610 6.22
egcd 1,230,000 22,800,000 9,880 18.5 124
fir4 76,200 131,000,000 12,100 1,720 6.30
median 142,000 10,700,000 5,270 75.4 26.9
momul 294,000 11,400,000 7,100 38.8 41.4

Table 4.5: Area results when the fabric is optimised for each benchmark circuit.

the number of product-term blocks required by PLAmap to implement the circuit,

as well as the datapath parameters described above, a custom-built tool is used to

generate an appropriately-sized fabric. The parameters use to construct the datapath

for each benchmark circuit is shown in Table 4.4. Each fabric is then synthesised using

Synopsys Design Compiler, and the cell area predicted by the same tool is reported.

Again, a 130nm CMOS process is assumed. The results are shown in Column 2 of

Table 4.5 (note that these results are slightly different than those from [Wilt 07] since

here we assume all inputs and outputs are registered). All results are shown to three

significant digits.

4.6 Results 93

For comparison, we also show the area that would be required to implement the same

circuit using the fine-grained synthesisable fabric from [Yan 06] in Column 3. These

measurements are obtained using the architectures and tools described in [Yan 06].

We are unable to compare our architecture to the architecture described in [Wilt 05],

since that architecture only supports combinational circuits, and most of our bench-

marks are sequential. Column 4 shows the area required by the benchmark circuit if

synthesised directly in macrocell, in which case there is no programmability.

Column 5 shows the ratio of the area required to implement each benchmark using

the fine-grained fabric to the area required to implement the same benchmark in our

architecture. As the table shows, there are two categories of circuits. Circuits bfly,

dotv3, dscg and fir4 all show ratios of between 1611 and 1940. In other words, our

architecture is 1611 times to 1940 times more area-efficient than the fine-grained

fabric. The remaining circuits show more modest ratios between 13.0 and 75.4.

These results are dramatic. First consider those benchmarks with ratios between 13.0

and 75.4. Given that, for each circuit, we are creating a fabric in which configuration

bits are shared between either 8 or 16 bits, we would expect to see a ratio of no larger

than 8 or 16. The reason our ratios are larger than these has to do with the ineffi-

ciencies of the fine-grained architecture when implementing very large circuits. The

architecture in [Yan 06] is optimised for somewhat smaller circuits (between 10 and

300 equivalent 4-input lookup tables). As the fine-grained architecture is scaled to im-

plement larger circuits, the size of the routing multiplexers grows. Each multiplexer

has an input for every primary input and every output in the previous levels within

the fabric. In [Yan 06], depopulating these multiplexers is not considered, since the

circuits are small enough that the multiplexer area does not become unwieldy. In

addition, the number of these multiplexers is proportional to the amount of logic in

the fabric, since there is one multiplexer per product-term block input. This means

that the overall size of the fabric grows quadratically with circuit size.

This quadratic increase in size suggests that the previous architecture is not efficient

94 Chapter 4 – Synthesisable Datapath FPGA Fabric

at implementing these sorts of large circuits. In addition, the architecture in [Yan 06]

is optimised for control circuits rather than datapath circuits. Thus, the comparison to

the fine-grained architecture must be made with caution. However, even if the fine-

grained architecture is optimised for our benchmark circuits, we would still expect

that our architecture would be significantly smaller than the fine-grained architecture.

The above explanation does not cover the four benchmarks that have ratios greater

than 1600. These benchmarks all contain a significant number of multipliers. In

our architecture, these multipliers are implemented as a hard embedded block (as in

many commercial stand-alone FPGAs). However, the fine-grained architecture does

not contain these embedded blocks, so the multipliers must be implemented using

the normal logic resources. This is aggravated by the fact that product-term based

architectures, such as [Yan 06] are notoriously bad at implementing XOR functions,

which are common in multipliers.

Column 6 shows the ratio of the area required to implement each benchmark circuit

in our fabric to the area required to implement the same benchmark circuit using

fixed ASIC cells (with no programmability). This measure is the overhead resulting

from configurability using our architecture. As the table shows, for the circuits with a

significant number of embedded multipliers, this ratio is between 3.8 and 6.3. For cir-

cuits without a significant number of embedded multipliers, this number is between

24 and 124. It is interesting that these larger numbers are of the same order of magni-

tude as the ratio of an FPGA implementation to an ASIC implementation [Kuon 07].

In other words, the overhead due to configurability in our architecture is similar to

the overhead inherent in a hand-designed stand-alone FPGA. This is a surprising re-

sult; it shows that synthesisable cores can provide the density that designers currently

accept from non-synthesised programmable logic devices.

4.6 Results 95

Benchmark Fabric Parameters Computed
D N M R C F A P

debug1 7 16 2 3 2 4 2 3
seqchk 9 16 1 1 3 5 3 3
fletcher 11 16 1 1 3 6 3 4
bfly 16 8 6 1 4 8 4 6
dotv3 9 8 6 1 3 5 3 3
dscg 16 8 3 2 4 8 4 6
egcd 70 8 2 4 18 35 18 24
fir4 16 8 1 1 4 8 4 6
median 11 16 1 1 3 6 3 4
momul 24 8 7 2 6 12 6 8

Table 4.6: Parameters used for each benchmark circuit when low-level parameters are
computed.

Benchmark Datapath Fine-Grain ASIC Fine-Grain/ Datapath/
(ours) [Yan 06] (µm2) Datapath ASIC
(µm2) (µm2)

debug1 178,000 1,300,000 3,640 7.30 48.9
seqchk 220,000 1,200,000 3,600 5.45 61.1
fletcher 196,000 2,580,000 4,660 13.2 42.1
bfly 335,000 132,000,000 17,800 394 18.8
dotv3 226,000 65,500,000 8,350 290 27.1
dscg 325,000 116,000,000 11,600 357 28.0
egcd 3,190,000 22,800,000 9,880 7.15 323
fir4 307,000 131,000,000 12,100 427 25.4
median 272,000 10,700,000 5,270 39.3 51.6
momul 542,000 11,400,000 7,100 21.0 76.3

Table 4.7: Area results when low-level parameters are computed.

4.6.3 Area Results - Derived Parameters

When gathering the results in Section 4.6.2 we choose all fabric parameters inde-

pendently for each circuit. This unfairly biases the results in our favour. One of the

drawbacks of partitioning the fabric between controls and datapaths is that different

user circuits require different amounts of controls and datapaths; since we do not

know what will be implemented in the fabric when the ASIC is designed, choosing

the amount of each type of fabric is difficult. If the partition is not chosen carefully,

either control resources or datapath resources will be wasted. This is not a problem

96 Chapter 4 – Synthesisable Datapath FPGA Fabric

with fine-grained architectures, since the fine-grained fabric can be used to build ei-

ther control or datapath structures. In this section, we address this issue by fixing this

parameter (as well as other parameters) as a function of the fabric size.

We repeat the experiments in Section 4.6.2. We choose values of D, N , M , and R

independently for each benchmark circuit. This is reasonable; when including a fab-

ric in an ASIC, the bit-width, the number of input and output buses, and the desired

fabric size are known. Unlike the previous experiments, however, we calculate the

remaining parameters as a function of D. If the resulting architecture has more con-

stant registers, feedback paths, multipliers, or product term blocks than are needed

by the benchmark circuit, then the extra resources are wasted. If the fabric does not

contain enough of any of these resources, the fabric size (D) is increased until the

benchmark circuit can be implemented. The parameters used for each benchmark

circuit are shown in Table 4.6. In all cases, we compute C = ⌈ D
4
⌉, F = ⌈ D

2
⌉, A= ⌈ D

4
⌉,

and P = ⌈ D
3
⌉. Although these may not be the optimum ratios, we do not have enough

benchmark circuits to determine optimum ratios for each parameter. These ratios

are selected because they appear “reasonable” based on our experience (for example,

since each product term block has three outputs, setting P = ⌈ D
3
⌉ means that, on av-

erage, one select line per wordblock can be generated). If additional experiments are

conducted, and the optimum ratios found, they would tend to improve the results in

this section.

Table 4.7 shows the results, using the same columns as in Table 4.5. Again, all re-

sults are shown to three significant digits. The size of the fine-grained fabric and the

ASIC implementation are copied into Table 4.7 for convenience. In general, the area

required to implement each benchmark circuit on our fabric has increased, due to the

benchmark circuits not exactly matching the generated architecture. The ratio of the

area required to implement each circuit in the fine-grained architecture of [Yan 06]

to the area required to implement the same benchmark in our fabric now ranges from

7.1 to 427, while the ratio of the area required to implement each circuit in our fabric

to the area required to implement the same circuit in an ASIC ranges from 18.8 to

4.6 Results 97

323.

4.6.4 Path Delay Results

Table 4.8 shows post-synthesis, pre-place and route delay estimates for various paths

within the fabric. The delay through the wordblock is the delay from the output of

the register in one wordblock to the input of the register in the next wordblock. This

quantity is independent of N , and depends very slightly on M , C , and F , as well as

the position of the wordblock in the array (since these parameters determine the size

of the routing multiplexer used to select inputs for the second wordblock). The delay

of the multiplier goes up as N increases. Measurements of the maximum carry-chain

delay within one wordblock are also given in the table (from the carry-in of the least

significant bit to the carry-out of the most significant bit). The last entry in the table

shows the delay of a combinational path that passes through all wordblocks in a fabric

with D=32 and A=8; clearly, most applications would not configure the fabric to have

such a long critical path.

Delay through one wordblock 3.25ns
Delay through one multiplier (8 bits) 5.39ns
Delay through one multiplier (16 bits) 8.50ns
Delay through carry-chain (8 bits) 8.71ns
Delay through carry-chain (16 bits) 14.9ns
Delay through 24 wordblocks and 8 multipliers 178ns

Table 4.8: Delay estimates of paths within fabric.

4.6.5 Delay and Power Results - Derived Parameters

The delay and power dissipation of our architecture depend on the circuit imple-

mented in the fabric. To estimate the delay and power overhead of our architecture,

we map each of our benchmark circuits to a datapath constructed using the derived

parameters from Table 4.6. For each mapping, we determine appropriate values for

98 Chapter 4 – Synthesisable Datapath FPGA Fabric

all configuration bits, and use Synopsys Design Compiler to estimate the critical path

and dynamic power dissipated by the fabric with these configuration bits set properly.

Again, a 130nm technology is assumed.

The results in this section are for the datapath portion of the fabric only. Measuring

the delay paths through the control block is difficult. Determining the state of every

programming bit in the datapath portion of the architecture is not difficult since there

are only a small number of programming bits. However, since in the fine-grained

control fabric, there are so many more programming bits, manually determining and

setting the state of each bit would be infeasible.

Table 4.9 shows the results. Column 2 shows the critical path delay of each circuit

implemented on our architecture, Column 3 shows the same quantity for each circuit

implemented as an ASIC, and Column 4 shows the ratio between these two estimates.

This ratio, which is the delay overhead imposed by reconfigurability, varies from 1.4 to

7.2. The larger ratios correspond to circuits that do not use the embedded multipliers.

In our architecture, the embedded multipliers are implemented using ASIC circuitry,

thus we would expect that circuits that make heavy use of the multipliers run closer

to the speed of the corresponding ASIC implementation. As with the area results,

these delay ratios are of the same order of magnitude as the ratio of the delay of a

standard FPGA implementation to that of an ASIC implementation [Kuon 07]. This

means that the delay overhead due to configurability in our architecture is similar to

the delay overhead inherent in a hand-designed stand-alone FPGA. Unlike our results,

however, [Kuon 07] found that the ratio does not depend strongly on the number of

embedded multipliers used. This is likely because, in a standard FPGA, the delay of

a net is primarily due to the routing connections between logic blocks, while in our

fabric, the delay depends more on the gates and connections within each wordblock

and multiplier.

The final three columns in Table 4.9 show power measurements for our architecture

and an ASIC. The ratios vary from 2.5 to 65. In general, the circuits that do not use

4.6 Results 99

Benchmark Datapath ASIC Ratio Datapath ASIC Ratio
(ns) (ns) (mW) (mW)

debug1 14.6 2.02 7.23 2.7 0.13 21
seqchk 15.4 2.27 6.78 4.0 0.12 33
fletcher 16.5 8.37 1.97 5.8 0.23 25
bfly 11.1 2.81 3.95 3.0 1.19 2.5
dotv3 9.94 3.75 2.65 1.7 0.52 3.3
dscg 7.64 4.72 1.62 2.6 0.70 3.7
egcd 14.3 6.65 2.15 26 0.40 65
fir4 10.5 4.21 2.49 2.3 0.62 3.7
median 16.5 2.33 7.08 4.6 0.44 10
momul 7.53 5.34 1.41 4.2 0.41 10

Table 4.9: Datapath delay and power estimates for configured fabric.

embedded multipliers show a larger ratio, as expected. The ratio for egcd is signifi-

cantly larger than the others. As shown in Table 4.4, this circuit requires more control

logic than the other circuits. Because we are fixing the ratio of control resources (P)

to wordblocks (D), a fabric large enough to implement the control part of the circuit

has many more wordblocks than are needed. In our architecture, these unused word-

blocks consume power (this suggests that we should “turn off” unused wordblocks,

however we do not consider this in this work). In [Kuon 07], it is reported that a stan-

dard FPGA dissipated 14 times more power than an ASIC; once again, this is in-line

with our results.

4.6.6 Proof-of-Concept Layout

As a proof-of-concept, we perform place and route on the datapath portion of our

fabric with D=12, N=8, M=7, R=2, F=6, A=0, and C=0 and is shown in Fig-

ure 4.6. The Verilog description of the fabric is synthesised with Synopsys Design

Compiler, targeting the STMicroelectronics 90nm, 7-layer metal process using the

STMicroelectronics CORE90GPSVT macrocell library. The netlist is flattened into a

single level of hierarchy before layout. The pre-layout netlist contains a total gate

area of 300098 µm2. The cell placement, cell sizing and repeater insertion is per-

formed by Cadence SoC Encounter. Detailed wire routing is performed using Cadence

100 Chapter 4 – Synthesisable Datapath FPGA Fabric

NanoRoute and is completed with no violations. The total gate area after place and

route is 336402 µm2. The placement region set to approximately 625 µm× 625 µm,

resulting in a gate density of 86.1%.

Figure 4.6: Proof-of-concept layout.

4.7 Comparison to Previous Work

Our architecture inherits ideas from previous work on fine-grained synthesisable fab-

ric, datapath-oriented FPGAs and coarse-grained reconfigurable architectures, such as

RaPiD [Cron 99]. This section compares our architecture to several previous studies,

as well as to architectures that have been previously proposed for debugging.

4.7.1 Alternative Debugging Architectures

Several other embedded debugging architectures have been proposed. Abramovici,

et al. have described their reconfigurable design-for-debug infrastructure for SoCs

[Abra 06]. Like our proposal, this infrastructure is targeted at general-purpose dig-

ital logic in a SoC design. Their architecture, however, is based on a distributed

4.7 Comparison to Previous Work 101

heterogeneous reconfigurable fabric. Distributing debug circuitry across the chip has

the advantage that the debug logic is likely to be positioned closer to the source of

the monitored signals. However, distributed circuitry makes it more difficult to com-

bine the debugging resources to implement larger debugging functions. A centralised

scheme like ours can likely support more complex debugging operations, and per-

haps can better amortise the cost of the debugging circuitry across different parts of

the SoC. Another difference between our architecture and that in [Abra 06] is that

ours does not require the identification of specific trigger signals when the debugging

circuitry is instantiated and connected to the SoC.

Sarangi et al. have described a proposal for using programmable hardware to help

patch design errors in processors [Sara 07]. As part of their patching process they

make use of programmable logic to detect specific conditions in the processor. In

some cases, after the detection of these specific problem conditions, they can make

use of existing processor features, such as pipeline flushes, cache re-fills, or instruction

editing to correct the error; in other cases they can cause an exception to be serviced

by the operating system or hypervisor. The primary motivation of their proposal is

the in-field correction of processor design errors, and not post-silicon debug, how-

ever it is clear that their proposal could also be used for post-silicon debug. Because

their architecture has been designed with one application in mind, it may not be gen-

eral enough for implementing debugging circuits useful in other types of integrated

circuits.

A similar proposal is described in [Wagn 06]. The focus in that work is on providing

a configurable state machine that matches error states in a processor and takes cor-

rective action when these error states occur during system operation. Although this is

not designed specifically for post-silicon debugging, it may be helpful in uncovering

some types of design errors in a processor. Again, however, it is not as flexible as our

architecture in which more general debug circuits can be implemented.

Previous work [Quin 05] describes another design-for-debug proposal. In that work,

102 Chapter 4 – Synthesisable Datapath FPGA Fabric

we employ a fine-grained programmable logic core based on a standard FPGA ar-

chitecture. This previous work leads to perhaps the most general implementation

of programmable debug circuitry, but it suffers from the overhead implicit in a fine-

grained architecture. In addition, this previous core is not synthesisable, which is a

key attribute of the architecture described in this work.

4.7.2 Fine-Grained Synthesisable Fabric

Although previous fine-grained synthesisable fabrics are not designed with debugging

in mind, they could be used for this purpose. We have compared our architecture to

a previous synthesisable architecture in Section 4.6.2 using a set of benchmark cir-

cuits. The architecture proposed in [Yan 06] is fine-grained and the reconfigurability

is provided by programmable logic arrays (PLA). For the circuits which contain sig-

nificant number of multipliers, our architecture is 1610 times to 1940 times more

area-efficient than the fine-grained fabric. This is because the multiplier in our archi-

tecture is implemented as a hard embedded block while the fine-grained architecture

does not contain these blocks. It means the multipliers must be implemented using

normal logic resources which contribute to large area consumption.

For some other circuits which do not have a large number of multipliers, the area ratio

is between 13 and 75. We observe that the architecture in [Yan 06] is not efficient

when implementing large circuits. The architecture in [Yan 06] contains many rout-

ing multiplexers. Both the size of these multiplexers and the number of multiplexers

grow linearly with the size of fabric. When the fabric is scaled sufficiently large to

implement the given benchmark circuits, these multiplexers become unwieldy and

cause the area to grow significantly.

4.7 Comparison to Previous Work 103

4.7.3 Datapath-Oriented FPGAs

Several previous studies have considered datapath-oriented FPGAs [Cher 96, Hauc 04,

Leij 03, Ye 06, Ye 03]. In these architectures, configuration bits are shared among

multiple lookup-tables and multiple routing switches. Again, these could also be used

for debugging.

In these previous works, it is assumed that the FPGA is to be laid out by hand or using

a custom layout tool, and thus, no attempt is made to remove combinational loops

in the unconfigured fabric. The absence of combinational loops is a key requirement

of a synthesisable architecture. Although these architectures can be synthesised (as

in [Leij 03]), the combinational loops will require designers to resolve these loops by

declaring false paths; this increases the difficulty of including these fabrics in a large

SoC.

A second difference between these datapath FPGAs and our architecture is that these

previous architectures have been optimised assuming that the bus width of the target

application and the pin assignments of the buses are not known when the fabric is

designed. This limits the amount of optimisation possible; for example, in [Ye 06],

it is found that the number of blocks sharing a set of configuration bits should be no

more than four. In our context, the bus width and pin assignments are determined

when the ASIC is designed, and will not change over the lifetime of the chip. This

allows us to share a set of configuration bits across all datapath bits in a word.

4.7.4 Coarse-Grained Fabrics

Coarse-grained architectures, in which lookup-tables are replaced by ALUs, have also

been described in [Cron 99, Gold 00, Mars 99, Sing 00]. Of these, the RaPiD archi-

tecture [Cron 99] is specifically designed for use in an SoC. RaPiD contains a linear

array of dedicated functional units connected using dedicated buses. Control logic is

104 Chapter 4 – Synthesisable Datapath FPGA Fabric

implemented using a separate module that provides control signals to the functional

units.

RaPiD is intended to support fairly large applications such as image and signal pro-

cessing, and may be best implemented as a hard programmable logic core. It would

be possible to “scale down” RaPiD and use it as a synthesisable core. However, like

the datapath FPGAs described in the previous section, the unconfigured RaPiD fabric

contains combinational loops. Our architecture eliminates these using a directional

routing network.

Another difference between RaPiD and our architecture is that RaPiD (as well as many

coarse-grained architectures) contains a heterogeneous mix of fixed-function datap-

ath elements rather than configurable wordblocks. When creating a RaPiD fabric, one

must choose the number of each type of functional unit to be included in the fabric.

However, once that decision is made, the location of each functional unit does not

matter, since buses can be routed from any functional unit to any other functional

unit. In our architecture, however, the routing network requires less area but is less

flexible, so it is less likely that a pre-positioned set of fixed functional units could be

connected to implement a target application. Thus, we provide a general-purpose

wordblock that can be used to implement many functions. The only exceptions to this

rule are the embedded multiplier blocks; we distribute these evenly across the fabric

to maximise the likelihood that applications can be mapped successfully.

A list of comparison between different type of datapath or coarse-grained reconfig-

urable fabric can be found in Table 4.10.

4.8 Summary

We have presented an architecture for a datapath-oriented synthesisable FPGA core

which can be used to provide post-fabrication flexibility to an SoC. The primary appli-

cation of such a core is to enable efficient on-chip debugging, but it can also be used

4.8 Summary 105

Sy
nt

he
si

sa
bl

e
FP

G
A

C
he

re
pa

ch
a

[C
he

r
96
]

Le
ijt

en
-N

ow
ak

[L
ei

j0
3]

R
aP

iD
[C

ro
n

99
]

Pi
pe

R
en

ch
[G

ol
d

00
]

C
oa

rs
e-

gr
ai

ne
d

Lo
gi

c
sh

ar
ed

-b
it

LU
T

sh
ar

ed
-b

it
LU

T
sh

ar
ed

-b
it

LU
T

fu
nc

ti
on

al
un

it
s

(r
eg

is
te

rs
,

m
ul

ti
pl

ie
r,

sh
if

te
r,

ad
de

r,
A

LU
)

A
LU

,L
U

T

O
th

er
Lo

gi
c

ca
rr

y-
ch

ai
n,

m
ul

ti
pl

ie
r

ca
rr

y-
ch

ai
n,

sh
if

te
r

ca
rr

y-
ch

ai
n

no
t

av
ai

la
bl

e
ca

rr
y-

ch
ai

n,
sh

if
te

r,
co

nfi
gu

ra
ti

on
co

nt
ro

lle
r

Fi
ne

-g
ra

in
ed

Lo
gi

c
pr

og
ra

m
m

ab
le

lo
gi

c
ar

ra
y

no
t

av
ai

la
bl

e
a

co
nfi

gu
ra

ti
on

of
co

ar
se

-g
ra

in
ed

lo
gi

c
no

t
av

ai
la

bl
e

vi
rt

ua
lis

at
io

n

R
ou

ti
ng

A
rc

hi
te

ct
ur

e

bu
s-

ba
se

d
ro

ut
in

g,
un

id
ir

ec
ti

on
al

bu
s-

ba
se

d
ro

ut
in

g,
de

di
ca

te
d

co
nt

ro
l

si
gn

al
ro

ut
in

g

bu
s-

ba
se

d
ro

ut
in

g,
pa

rt
ia

lb
it

-b
as

ed
ro

ut
in

g

bu
s-

ba
se

d
ro

ut
in

g,
de

di
ca

te
d

co
nt

ro
l

si
gn

al
ro

ut
in

g

st
ri

p-
ba

se
d

ro
ut

in
g,

gl
ob

al
ro

ut
in

g
fo

r
se

le
ct

ed
re

gi
st

er
s

C
on

fig
ur

at
io

n
O

pt
io

ns

4-
in

pu
t

bu
s-

ba
se

d
lo

gi
c,

ad
de

r,
m

ul
ti

pl
ex

er
,F

IF
O

bu
s-

ba
se

d
lo

gi
c,

ad
de

r,
sh

if
te

r,
m

ul
ti

pl
ex

er

bu
s-

ba
se

d
lo

gi
c,

ad
de

r,
m

ul
ti

pl
ie

r,
m

ul
ti

pl
ex

er
,r

an
do

m
lo

gi
c

no
t

av
ai

la
bl

e
–

ea
ch

fu
nc

ti
on

al
un

it
ha

s
ha

rd
w

ir
ed

fu
nc

ti
on

ad
de

r,
m

ul
ti

pl
ie

r,
ra

nd
om

lo
gi

c

M
od

el
lin

g
flo

w
St

an
da

rd
m

ac
ro

ce
ll

A
na

ly
ti

ca
l

St
an

da
rd

m
ac

ro
ce

ll
C

us
to

m
la

yo
ut

,
Ph

ys
ic

al
m

ea
su

re
m

en
t

St
an

da
rd

m
ac

ro
ce

ll
fo

r
da

ta
pa

th
,

cu
st

om
la

yo
ut

fo
r

ro
ut

in
g

Te
ch

no
lo

gy
0.

13
µ

m
1.

2µ
m

0.
13
µ

m
0.

5µ
m

0.
25
µ

m

Ta
bl

e
4.

10
:

C
om

pa
ri

so
n

of
co

ar
se

-g
ra

in
ed

re
co

nfi
gu

ra
bl

e
fa

br
ic

.

106 Chapter 4 – Synthesisable Datapath FPGA Fabric

to implement small datapath circuits. The proposed architecture features sharing

configuration bits, carry-chains, directional routing architecture and embedded mul-

tipliers. Compared to a previous synthesisable embedded programmable logic core,

our architecture is between 7 times and 427 times more area efficient, depending on

the number of embedded multipliers in the fabric. This opens the use of synthesisable

embedded programmable logic cores to significantly larger applications, and provides

a configuration overhead similar to that of standard hand-designed FPGAs. We have

shown that the delay and power overhead of our architecture is also similar to that of

standard FPGAs. A proof-of-concept layout of the core is described.

There are two important limitations of these comparisons. First, the fine-grained

architecture is optimised for smaller control-type circuits, and thus is inefficient at

implementing larger datapath circuits. If the fine-grained architecture is optimised

for our benchmark circuits, the difference between the fine-grained and datapath ar-

chitecture would be reduced significantly. Second, the fine-grained architecture does

not contain embedded multipliers, while the datapath architecture does. If multipliers

are added to the fine-grained architecture, the fine-grained architecture would per-

form better on those circuits that contain multiplication (four of our ten benchmark

circuits).

Using standard macrocell design flow, we show that customisability of datapath FPGA

fabric. The parameter sweep approach presented in the chapter allows us to identify

how the architecture parameters affect the performance of the circuits. The same ap-

proach can be applied on other architectures or designs which involves parameterised

design flow.

Chapter 5

Floating Point FPGA: Architecture and

Modelling

5.1 Introduction

This chapter introduces the architecture of FPFPGA. The architecture is an extension

of the one discussed in Chapter 4. Apart from bus-based logic fabric, the proposed

FPFPGA architecture has both fine-grained and heterogeneous blocks, such usage of

multiple granularity having advantages in speed, density and power over more con-

ventional heterogeneous FPGAs. The heterogeneous block is used to implement the

datapath, while lookup table (LUT) based fine-grained resources are used for imple-

menting state machines and bit level operations. In our architecture, the heteroge-

neous blocks have flexible, parameterised architectures which are synthesised from a

hardware description language. This allows tuning of the parameters in a quantitative

manner to achieve a good balance between area, performance and flexibility.

One major issue when evaluating new architectures is determining how a fair com-

parison to existing FPGA architectures can be made. The Versatile Place and Route

(VPR) tool [Betz 97] is widely used in FPGA architecture research. However, the CAD

algorithms used within are different to those of modern FPGAs, as is its underlying

108 Chapter 5 – Floating Point FPGA: Architecture and Modelling

island-style FPGA architecture. As examples, VPR does not support retiming, nor does

it support carry-chains which are present in all major FPGA devices. To enable mod-

elling of our FPFPGA and comparison with a standard island-style FPGA, we adopt the

methodology presented in Chapter 3. Using this method, the impact of incorporating

embedded elements on performance and area can be quickly evaluated, even if an

actual implementation of the element is not available.

Since total power consumption of FPGAs increases with each reduction of integrated

circuit feature size, power reduction has become one of the primary concerns in FPGA

architecture. Power consumption can be divided into two parts, static and dynamic

power consumption. Static power dissipation is due to leakage while dynamic power

dissipation is due to switching activity of the circuits. It is reported that a commercial

FPGA device with 90nm technology process consumes 62% of its total power as dy-

namic power [Tuan 06]. This chapter extends the VEB methodology to illustrate how

dynamic power estimation can be achieved under this design flow.

As explained in later context of this chapter, the core of a FPFPGA is a set of hetero-

geneous blocks packed with the most frequently used logic to reduce area and delay.

In the design phase of these heterogeneous blocks and FPFPGA architecture, one crit-

ical issue is that how to rapidly estimate the dynamic power consumption across a

number of candidate designs. Traditional power measurement involving retrieval of

switching activity based on post-place and route simulation may not be practical as

for every new architecture, the application circuit has to be manually mapped and

the configuration of the heterogeneous block may be different each time. In addition,

simulation test vectors have to be adjusted according to the mapped design. Such

estimation is too tedious and is usually not necessary for initial design exploration.

To address this issue, we propose a high level dynamic power consumption estimation

technique for FPFPGAs. We assume constant activity rate on all the nets in a design.

The basic idea is to measure the power consumption of the heterogeneous block with

ASIC tools and the power consumption of the fine-grained unit with FPGA design

5.2 FPFPGA Architecture 109

tools under the same conditions. The total power estimate can be given by the sum

of these two measurements. This approach is briefly described in Chapter 3 and this

chapter provides an extensive review to this approach and demonstrate how to use

this approach to estimate the dynamic power consumption of FPFPGA.

This chapter is organised as follows. Section 5.2 analyses the characteristics appearing

in most floating point applications and suggests a list of requirement for the architec-

ture of FPFPGA device. It is then followed by the proposed architectures. Section 5.3

demonstrates an example on using an FPFPGA device to implement application cir-

cuits. Matrix multiplication is employed as an example. Section 5.4 presents a mod-

elling flow to estimate the performance delivered by the FPFPGA. It is an extension

from Chapter 3 and we include area, delay and power estimation for an FPFPGA

device. Section 5.5 reports the results compared with traditional FPGA devices. Sec-

tion 5.6 compares with previous attempts in designing reconfigurable architecture for

floating point computations and a summary is given in Section 5.7.

5.2 FPFPGA Architecture

5.2.1 Requirements

Before we introduce the FPFPGA architecture, common characteristics of what we

consider a reasonably large class of floating point applications which might be suitable

for signal processing, linear algebra and simulation are first described. Although

the following analysis is qualitative, it is possible to develop the architecture in a

quantitative fashion by profiling application circuits in a specific domain.

In general, FPGA-based floating point application circuits can be divided into control

and datapath portions. The datapath typically contains floating point operators such

as adders, subtractors, and multipliers, and occasionally square root and division op-

erations. The datapath often occupies most of the area in an implementation of the

110 Chapter 5 – Floating Point FPGA: Architecture and Modelling

application. Existing FPGA devices are not optimised for floating point computations

and for this reason, floating point operators consume a significant amount of FPGA

resources. For instance, if the embedded DSP48 blocks are not used, a double preci-

sion floating point adder requires 701 slices on a Xilinx Virtex 4 FPGA, while a double

precision floating point multiplier requires 1238 slices on the same device [Xili 05].

The floating point precision is usually a constant within an application. The IEEE

754 single precision format (32-bit) or double precision format (64-bit) is commonly

used.

The datapath can often be pipelined and connections within the datapath may be

uni-directional in nature. Occasionally there is feedback in the datapath for some

operations such as accumulation. The control circuit is usually much simpler than

the datapath and therefore the area consumption is typically lower. Control is usually

implemented as a finite state machine and most FPGA synthesis tools can produce an

efficient mapping from the Boolean logic of the state machine into fine-grained FPGA

resources.

Based on the above analysis, some basic requirements for FPFPGA architectures can

be derived.

1. A number of coarse-grained floating point addition and multiplication blocks

are necessary since most computations are based on these primitive operations.

Floating point division and square root operators can be optional, depending on

the domain-specific requirement.

2. Coarse-grained interconnection, fabric and bus-based operations are required

to allow efficient implementation and interconnection between fixed-function

operators.

3. Dedicated output registers for storing floating point values are required to sup-

port pipelining.

5.2 FPFPGA Architecture 111

4. Fine-grained units and suitable interconnections are required to support imple-

mentation of state machines and bit-oriented operations. These fine-grained

units should be accessible by the coarse-grained units and vice versa.

5.2.2 Architecture

In Chapter 4, the reconfigurable fabric of datapath FPGA consists of wordblocks and

control blocks. The wordblock is designed for bus-based computation while the con-

trol block is designed for random logic. The following observations have been made

regarding to such architecture:

1. The control block is implemented in programmable logic array style and thus is

not effective to handle random logic when compared with LUT approach.

2. The functionality of the wordblock can be more domain-specific. For example,

floating point circuit hardly benefits from the generic wordblock.

3. It is not necessary to bundle the control block and wordblock together. Some

circuits may require more wordblock for datapath construction. Other may

demand more control block such as state machine circuitry.

Considering both the observations of datapath FPGA and the requirement of FPFPGA,

we invent a novel FPGA architecture which captures the essence of datapath FPGA

and existing island-style FPGA as follows:

1. Island-style FPGA architecture is maintained. The routing topology and LUT-

based fine-grained unit is the same as existing commercial FPGA device. How-

ever, certain amount of heterogeneous datapath FPGA fabric is embedded as

floating point arithmetic extension.

2. The datapath FPGA fabric resembles the one presented Chapter 4. The control

block is removed. Some generic wordblocks are replaced with floating point

112 Chapter 5 – Floating Point FPGA: Architecture and Modelling

specific circuit. This modified datapath FPGA fabric is referred to coarse-grained

unit in the remaining of the thesis.

Figure 5.1 shows a top-level block diagram of our FPFPGA architecture. It employs an

island-style fine-grained FPGA structure with dedicated columns for coarse-grained

units. Both fine-grained and coarse-grained units are reconfigurable. The coarse-

grained part contains embedded fixed-function floating point operators such as adders

and multipliers while it is surrounded by fine-grained unit. The connection between

coarse-grained units and fine-grained units is similar to the connection between em-

bedded blocks (embedded multiplier, DSP block or block RAM) and fine-grained units

in existing FPGA devices.

The coarse-grained logic architecture is optimised to implement the datapath portion

of floating point applications. The architecture of each block is illustrated in Fig-

ure 5.2. Each block consists of a set of floating point multipliers, adder/subtractors,

and general-purpose bitblocks connected using a uni-directional bus-based intercon-

nect architecture. Each of these blocks will be discussed in this section. To keep our

discussion general, we have parameterised the architecture as shown in Table 5.1.

There are D subblocks in each coarse-grained block. P of these D subblocks are float-

ing point multipliers, another P of them are floating point adders and the rest (D−2P)

are general-purpose wordblocks. Specific values of these parameters will be given in

Section 5.4. Generic wordblock can configure as register, FIFO, fixed point addition,

subtraction, multiplexor, floating point comparison and other bus-based 4-input logic.

We decide not to embed a whole FPU in an FPFPGA as we demonstrate in Chap-

ter 3. Instead, we decompose an FPU to different floating point operators such as

adders and multipliers. Those units then cluster together and connected using bus-

based routing supported by bus-based generic wordblock. Each cluster, also known as

coarse-grained unit, is surrounded by fine-grained logic. We believe such architecture

can yield better performance since every single floating point operator can operate

in parallel. In addition, decomposing the FPU can allow more flexible combination

5.2 FPFPGA Architecture 113

when construction a datapath to floating point applications.

Symbol Parameter description

D Number of blocks (including floating point blocks and wordblocks)
N Bus width
M Number of input buses
R Number of output buses
F Number of feedback paths
P Number of floating point adders and multipliers

Table 5.1: Parameters for the coarse-grained unit.

The core of each coarse-grained block contains P multiplier and P adder/subtractor

subblocks. Each of these blocks has a reconfigurable registered output, and associated

control input and status output signals. The control signal is a write enable signal that

controls the output register. The status signals report the subblock’s status flags and

include those defined in IEEE standard as well as a zero and sign flag. The fine-grained

unit can monitor these flags via the routing paths between them.

Fine-grained units

Coarse-grained units with

embedded floating point units

Figure 5.1: Architecture of the FPFPGA.

Each coarse-grained block also contains general-purpose wordblocks as mentioned in

Chapter 4. Apart from the control and status signals, there are M input buses and

R output buses connected to the fine-grained units. Each subblock can only accept

inputs from the left, simplifying the routing. To allow more flexibility, F feedback

registers have been employed so that a block can accept the output from the right

block through the feedback registers. For example, the first block can only accept

114 Chapter 5 – Floating Point FPGA: Architecture and Modelling

U1:fpmul

control status

Q D

U2:fpadd

control status

U{D-1}:wb

bit 0

bit 1

bit 2

bit N-1

control status

Output

Mux

Input

Buses (M)

Feedback

Registers (F)

Feedback

Mux

Output

Buses (R)

control

Control Signal Input Status Flag Output

Floating

Point

Multiplier

Floating

Point

Adder/

Subtractor

status

bit 0

bit 1

bit 2

bit N-1

control status

U0:wb

Figure 5.2: Architecture of the coarse-grained unit.

input from input buses and feedback registers, while the second block can accept

input from input buses, the feedback registers and the output of the first block.

Each floating point multiplier is logically located to the left of a floating point adder so

that no feedback register is required to support multiply-add operations, which appear

in many applications such as DSP and scientific calculation. The coarse-grained units

can support multiply-accumulate functions by utilising the feedback registers. The

bus width of the coarse-grained units is 32-bit for the single precision FPFPGA and

64-bit for double precision one.

Switches in the coarse-grained unit are implemented using multiplexers and are bus-

oriented. A single set of configuration bits is required to control each multiplexer,

improving density compared to a fine-grained fabric.

The novel aspect of the proposed architecture lies on both customisability and recon-

figurability. During the architecture design phase, (i.e. the stage before fabrication),

FPGA designers can choose the suitable parameters according to the domain-specific

requirement. In particular, the designer can change the functionality of each block.

While we present generic wordblock, floating point adder and floating point multi-

plier in this work, each wordblock can essentially replace by any bus-based computa-

5.3 Example Mapping 115

tion unit. For example, if the application-domain demands large amount of floating

point division, the designer may want to embed couples of floating point divider or

inversion unit instead of floating point adder into the coarse-grained fabric by trading

off area.

Another important parameter of the FPFPGA architecture is the number of input and

output. Both parameters affect the number of routing channel inside the coarse-

grained unit. One should notice that each coarse-grained block may have different

customisation. Even though each customisation generates different layout, it can

still be possible to embed into FPGA as long as it have the same width so that the

coarse-grained units can be packed into the same column. It means that different

combination of coarse-grained units can co-exist with each other in the same FPGA

device. This further enhances the customisability of FPFPGA.

We modify the circuit generator in Chapter 4 to produce FPFPGA circuit and two more

parameters are introduced. One can specify the number of floating point adders and

multipliers to the generator to produce synthesisable RTL description of the corre-

sponding coarse-grained unit.

5.3 Example Mapping

Reg0 Reg1

Reg3Reg2

result
CGU1CGU0

Block RAM 0

(Matrix A)

Block RAM 1

(Matrix B)

State

Machine

address

address

data

data

Block RAM 2

(Matrix C)

address, we

d0

d4

d2
d3

d5

r1d1

(a) Fine-grained unit mapping.

FM1

(reg)
FA2 WB3 WB4

FA6

(reg)

d0

d2

r1

FM5

(reg)

d1

d3

WB0 WB7 WB8

FM1

(reg)
FA2 WB3 WB4

FA6

(reg)

d4

result

WB0 WB7 WB8

r1

d5

FM5

(reg)

0.0

(b) Coarse-grained unit mapping.

Figure 5.3: Example mapping for matrix multiplication.

To illustrate how our architecture can be used to implement a datapath, we use the

116 Chapter 5 – Floating Point FPGA: Architecture and Modelling

example of a floating point matrix multiply. Figure 5.3 illustrates the example data-

path and the implementation of this datapath on our architecture. In this example,

we assume an architecture in which the multiplication subblocks are located in the

second and sixth subblock within the architecture and floating point adder/subtractor

units are located in the third and the seventh subblock.

The datapath of this example application can be implemented using two coarse-

grained blocks. The datapath produces the result of the equation d0×d2+ d1×d3+

d4×d5. The first coarse-grained unit performs two multiplications and one addition.

The result (r1) is forwarded to the next coarse-grained unit. The second coarse-

grained unit performs one multiplication and one addition. However, as all multipli-

cations start in the same clock cycle, the last addition cannot start until r1 is ready. In

order to synchronise the arrival time of r1 and d4×d5, another floating point adder

(FA2) in the second coarse-grained block is instantiated as a FIFO with the same la-

tency as FA6 in CGU0. This demonstrates an alternate use of a coarse-grained unit.

Finally r1 and d4×d5 are added together and the state machine sends the result

to the block RAM. All FPU subblocks have an enabled registered output to further

pipeline the datapath.

5.4 Modelling

5.4.1 Overview

In this section, we describe how to employ the VEB methodology to assist the mod-

elling of FPFPGA. The host FPGA supplies fine-grained unit model while the coarse-

grained unit model can be described using register transfer language (RTL) and the

corresponding characteristics can be obtained by following an ASIC macrocell library

development approach. We also provide addition information on how to estimate the

dynamic power consumption.

5.4 Modelling 117

fine-grained units

a b d e + c

a>b cwe

finish

start

a>b
cwe

coarse-grained units

process (clk) begin

if (clk = ‘1’ and clk’event’)

then

 start <= finish; end if;

end process;

cwe <= start and a_ge_b;

U0: coarse_grained_unit

port map

(clk, a_ge_b, cwe, ...);

Fine-grained netlist

0010101011.....
coarse-grained unit

ASIC macrocell model

Timing Model Area Model

VEB netlist
Host FPGA

Devices

Timing and Area of FPFPGA

HDL

Description

HDL

Synthesis

 bitstream

generation

Timing

Analysis

VEB

Compilation

Vendor-Specific

Place and Route

Area

Analysis

Figure 5.4: Modelling flow overview.

Figure 5.4 illustrates the modelling flow using the VEB methodology. The input is a

high level application description and the output is an FPGA bitstream. We define the

parameters used in constructing the coarse-grained unit of FPFPGA. The application

is first broken into control logic and datapath portions. The datapath portion is then

mapped to the pre-defined coarse-grained unit whenever possible. Fine-grained units

representing those parts of the circuit that will be mapped to lookup-tables in the cases

that no suitable coarse-grained unit is found or all have been used. This procedure is

done manually as it is illustrated in Section 5.3.

While the area model of the VEB experiment presented in Chapter 3 is obtained from

the physical layout of existing design, there is no such coarse-grained unit available

as physical layout since it is still in design stage. The area model is therefore obtained

from other means. For instance, we apply the standard ASIC macrocell design flow

118 Chapter 5 – Floating Point FPGA: Architecture and Modelling

to obtain area model. The circuit generator discussed in Chapter 4 is extended to

support generation of floating point operator in datapath FPGA fabric. As soon as the

circuit generator produces a RTL description of the coarse-grained unit according to

the input parameters, the description can then be fed into synthesis tool and the area

model can be retrieved from the standard ASIC macrocell design flow.

It is important to note that timing information cannot be determined before pro-

gramming the configuration bits. Otherwise, the synthesis tool reports the worst case

scenario where the longest combinational path from the first wordblock to the last

wordblock is considered as critical path and this is usually not the correct timing in

most designs. To address this issue, the tool has to recognise the configuration of the

coarse-grained unit before the timing analysis. Therefore, a set of configurations is

generated during manual mapping, and the associated bitstream can be used in timing

analysis. This bitstream can be imported to the timing analysis tool as case analysis,

so the tool can identify false paths during timing analysis and produce correct timing

for that particular configuration.

5.4.2 Power Modelling

This section illustrates a detail power estimation flow of FPFPGA architecture. While

Chapter 3 mentions the basic idea of the power estimation flow, this section discusses

how to apply the idea to obtain the power consumption of FPFPGA device. We apply

the same assumption as discussed in Section 3.2.1 throughout this section.

A web-based power estimation tool [Xili 08b] is provided by the vendor which in-

volves a spreadsheet. The spreadsheet requires users to specify the frequency, number

of registers used, number of LUT used, number of embedded multiplier used, num-

ber of block memory used, amount of routing used and the average toggle rate of

the design. Before we estimate the dynamic power consumption on the FPFPGA, we

employs the standard VEB flow described in Section 5.4.1 once to obtain the area and

5.4 Modelling 119

the delay of the FPFPGA. The information is required during the dynamic power esti-

mation. The dynamic power consumption of fine-grained units (Pf gu), coarse-grained

units (Pveb) the associated output loading (Pr) are estimated separately.

Fine-grained units (Pf gu)

When estimating the power consumption of the fine-grained unit using the web-tool,

we choose a medium amount of routing resources because circuits implemented on

fine-grained units are mostly control signals which are usually random logic. Ac-

cording to the vendor’s suggestion [Xili 08b], medium routing should be selected for

random logic. In addition, 12.5% toggle rate on all the nets is specified. There are

other information can be specified in the power estimation tool such as the I/O cells

and clock configurations. As the power estimation on I/O cells and clock management

units are not included in the comparison, these information can be ignored in power

estimation. Once all the required data is specified in the power estimation tool, the

dynamic power consumption of the circuit can be obtained.

Coarse-grained units (Pveb)

To comply with Assumption 1 listed in Section 3.2.1, a UMC 0.13µm technology

process and its associated ASIC macrocell library is used when modelling the dynamic

power consumption of the coarse-grained unit. We believe this technology process is

similar to the one used in Xilinx Virtex II device.

It would appear at first that dynamic power consumption of a coarse-grained unit can

be determined by setting a constant toggle rate on all the nets in that unit. However,

this is usually not the case as there may be some unused wordblocks where the input

is always a constant and therefore the activity rate of these blocks is zero. Instead, we

assume constant toggle rates on all used wordblocks and floating point operators, and

zero toggle rate on all unused wordblocks. As a result, all unused wordblocks have

zero dynamic power consumption. In an analogous manner, we also assume unused

logic cells have zero dynamic power consumption in the commercial FPGA. Unused

wordblocks can be identified from the routing configuration bits in the bitstream.

120 Chapter 5 – Floating Point FPGA: Architecture and Modelling

Similar to the fine-grained fabric, a 12.5% toggle rate is applied to all the nets in used

wordblocks and floating point operators.

Output loading (Pr)

The output loading of the coarse-grained unit has to be considered when estimating

the dynamic power consumption. Based on the calibration experiment as explained

in Section 5.5, the output loading of each pin is found to be 4.5pF. This allows the

ASIC tool chain to consider the dynamic power consumption of the coarse-grained

unit logic with the associated routing resources to the fine-grained unit.

The total dynamic power consumption of FPFPGA can be obtained by the sum of

dynamic power consumption from coarse-grained and fine-grained unit.

5.5 Results

Circuit # of Add/Sub # of Mul Domain Nature

bfly 4 4 DSP kernel
dscg 2 4 DSP kernel
fir 3 4 DSP kernel

mm3 2 3 Linear algebra kernel
ode 3 2 Linear algebra kernel
bgm 9 11 Finance application
syn2 5 4 N/A synthetic
syn7 25 25 N/A synthetic

Table 5.2: Benchmark circuits.

Eight benchmark circuits are used in this study as shown in Table 5.2. Five are com-

putational kernels, one is a Monte Carlo simulation datapath, and two are synthetic

circuits. All benchmark circuits involve single precision floating point operations. We

choose these circuits since they are representative of the applications we envision be-

ing used on an FPFPGA. The application domains we chosen involve DSP and linear

algebra. These kind of applications usually demand plenty of floating point operation.

We also select one financial computation application to show that our architecture can

5.5 Results 121

implement a more complex system which can solve some real-life problems.

We note that the strong representation of simple floating point kernels that map di-

rectly to the coarse-grained units favourably influences the overall density and perfor-

mance metrics so our results can be considered an upper bound. Dependencies, map-

ping, control and interfacing are issues likely to degrade performance. Applications,

which do not require floating point operations or bus-based operations, would prob-

ably cannot exploit the coarse-grained units and these may cannot be implemented

efficiently on FPFPGA. Such applications include, but not limited to, bit manipulation

algorithms such as symmetric encryption, multimedia encoding and data compres-

sion.

The bfly benchmark performs the computation z = y + x ∗ w where the inputs and

output are complex numbers; this is commonly used within a Fast Fourier Transform

computation. The dscg circuit is the datapath of a digital sine-cosine generator. The fir

circuit is a 4-tap finite impulse response filter. The mm3 circuit performs a 3-by-3 ma-

trix multiplication. The ode circuit solves an ordinary differential equation. The bgm

circuit computes Monte Carlo simulations of interest rate model derivatives priced

under the Brace, Ga̧tarek and Musiela (BGM) model [Zhan 05]. All the wordlengths

of the above circuits are 32 bit.

In addition, a synthetic benchmark circuit generator based on [Kund 04] is used. The

generator can produce floating point circuits from a characterisation file describing

circuit and cluster statistics. Two synthetic benchmark circuits are produced. Circuit

syn2 contains five floating point adders and four floating point multipliers. Circuit

syn7 contains 25 floating point adder and 25 floating point multipliers. The syn7

circuit is considerably larger than the other benchmarks.

In this section, we present an evaluation of our architecture. The flow described in

the previous section is employed.

The best-fit architecture can be determined by varying the parameters to produce a

122 Chapter 5 – Floating Point FPGA: Architecture and Modelling

Fabric
Area (A)

(µm2)
Feature Size

(L) (µm)
Normalised
Area (A/L2)

Area
(LC)

Input Pin Output Pin

Virtex II LC 5,456 0.15 242,489 1 4(4) 2(2)
SP-CGU 498,847 0.13 30,203,964 122 157 (488) 162(244)
DP-CGU 1,025,624 0.13 60,687,797 251 285 (1004) 258(502)

Table 5.3: Normalisation on the area of the coarse-grained units against a Virtex II
LC. SP and DP stand for single precision and double precision respectively. For the
values shown in the second column (Area), 15% overheads have already been applied
on the coarse-grained units.

design with maximum density over the benchmark circuits. Additional wordblocks are

included, allowing more flexibility for implementing circuits outside of the benchmark

set. Manual mappings are performed for each benchmark. A more in-depth analysis

on how those parameters affect the application performance is on-going work.

For the single precision FPFPGA device, a Xilinx XC2V3000-6-FF1152 FPGA is used as

the host and we assume 16 coarse-grained units. We emphasise that the parameter

settings chosen for the coarse-grained block is fixed over the entire set of benchmarks,

each coarse-grained unit having nine subblocks (D = 9), four input buses (M = 4),

three output buses (R = 3), three feedback registers (F = 3), two floating point

adders and two floating point multipliers (P = 2). We assume that the two floating

point multipliers in the coarse-grained unit are located at the second and the sixth

subblock. The two floating point adders are located in the third and the seventh

subblock.

The coarse-grained blocks constitute 7% of the total area of an XC2V3000 device. All

FPGA results are obtained using Synplify Premier 9.0 for synthesis and Xilinx ISE 9.2i

design tools for place and route. All ASIC results are obtained using Synopsys Design

Compiler V-2006.06.

The physical die area and photomicrograph of a Virtex II device has been reported [Yui 02],

and the normalisation of the area of coarse-grained unit is estimated in Table 5.3.

From inspection of the die photo, we estimate that 60% of the total die area is used

for logic cells.

5.5 Results 123

This means that the area of a Virtex II LC is 5,456µm2. This number is normalised

against the feature size (0.15µm). A similar calculation is used for the coarse-grained

units. The ASIC synthesis tool reports that the area of a single precision coarse-

grained unit is 433,780µm2. We further assume 15% overhead after place and route

the design based on our experience [Wilt 07]. The area values are normalised against

the feature size (0.13µm). The number of equivalent logic cell is obtained through

the division of coarse-grained unit area by slice area. This shows that single precision

coarse-grained unit is equivalent to 122 LCs. Assuming each LC has two outputs,

the VEB allow maximum of 244 output pins while the coarse-grained unit consumes

162 output pins only. Therefore, we do not need to further adjust the area.

Single precision FPFPGA results are shown in Table 5.4a and Figure 5.5a and 5.5b.

A comparison between the floorplan of the Virtex II device and the floorplan of the

FPFPGA on bgm circuit is illustrated in Figure 5.6.

The FPU implementation on FPGA is based on the work in [Rudo 05]. This implemen-

tation supports denormalised floating point numbers which are required in the com-

parison with the FPFPGA. The FPU area for the XC2V3000 device (seventh column) is

estimated from the distribution of LUTs, which is reported by the FPGA synthesis tool.

The logic area (eighth column) is obtained by subtracting the FPU area from the total

area reported by the place and route tool. As expected, FPU logic occupies most of

the area, typically more than 90% of the user circuits. While the syn7 circuit cannot

fit in an XC2V3000 device, it can be tightly packed into a few coarse-grained blocks.

The circuit syn7 has 50 FPUs which consume 214% of the total FPGA area. They can

fit into 16 coarse-grained units, which constitute just 6.8% of the total FPGA area.

Similar experiments for double precision floating point applications have been con-

ducted and the results are reported in Table 5.4b, Figure 5.5c and Figure 5.5d. In

double precision FPFPGA, we use the XC2V6000 FPGA as the host FPGA and the

comparison is done on the same device.

For both single and double precision benchmark circuits, the proposed architecture

124 Chapter 5 – Floating Point FPGA: Architecture and Modelling

reduces the area by a factor of 25 on average, a significant reduction. The saving is

achieved by (1) embedded floating point operators, (2) efficient directional routing

and (3) sharing configuration bits. On larger circuits, or on circuits with a smaller

ratio of floating point operations to random logic, the improvement will be less sig-

nificant. However, the reported ratio gives an indication of the improvement possible

if the architecture is well-matched to the target applications. In essence, our archi-

tecture stands between ASIC and FPGA implementation. The authors in [Kuon 07]

suggest that the ratio of silicon area and delay required to implement circuits in FP-

GAs and ASICs is on average 35. Our proposed architecture can reduce the gap

between FPGA and ASIC from 35 times to 1.4 times when floating point applications

are implemented on such FPGAs.

The delay reduction is also significant. In our benchmark circuits, delay is reduced

by 3.6 times on average for single precision applications and 4.3 times on average for

double precision applications. We believe that double precision floating point imple-

mentation on commercial FPGA devices is not as effective as the single precision one.

Therefore, the double precision FPFPGA offers better delay reduction than the single

precision one. In our circuits, the critical path is always within the embedded floating

point units, thus we would expect a ratio similar to that between normal FPGA and

ASIC circuitry. Our results are consistent with [Kuon 07] which suggests the ratio is

between 3 and 4. As the critical paths are in the FPU, improving the timing of the

FPU through full-custom design would further increase the overall performance.

It is possible to allow more flexibility by replacing coarse-grained units with fine-

grained ones. As an example, the fir4 circuit requires 2 coarse-grained units and 4

slices. However, it can also be implemented using one coarse-grained unit and 1317

slices, while the delay is increased from 4.8ns to 9.1ns. By slightly increasing the

number of slices by 100, this configuration allows us to implement the equationp
x2+ y2+ z2 which consists of 3 multipliers, 2 adders and a square root. Two ad-

ditions and two multiplications can be implemented on a coarse-grained unit, while

another multiplication and the square root operation can be implemented on fine-

5.5 Results 125

0

5000

10000

15000

20000

25000

30000

35000

bfly dscg fir mm3 ode bgm syn2 syn7

Benchmark Circuits

E
q

u
iv

a
le

n
t

L
o

g
ic

 C
e
ll

Single precision FPFPGA

Virtex II

(a) Single precision – area.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

bfly dscg fir mm3 ode bgm syn2 syn7

Benchmark Circuits

D
e
la

y
 (

n
s
)

Single precision FPFPGA

Virtex II

(b) Single precision – delay.

0

5000

10000

15000

20000

25000

30000

35000

bfly dscg fir mm3 ode bgm syn2

Benchmark Circuits

E
q

u
iv

a
le

n
t

L
o

g
ic

 C
e
ll

Double precision FPFPGA

Virtex II

(c) Double precision – area.

0.00

5.00

10.00

15.00

20.00

25.00

bfly dscg fir mm3 ode bgm syn2

Benchmark Circuits

D
e
la

y
 (

n
s
)

Double precision FPFPGA

Virtex II

(d) Double precision – delay.

Figure 5.5: Comparisons of FPFPGA and Xilinx Virtex II FPGA device.

(a) Virtex II 3000. The circuit consumes 100% of
chip area.

(b) FPFPGA. Coarse-grained units are identified by
tightly packed logic cells in a rectangular region.
The circuit consumes 5% of chip area.

Figure 5.6: Floorplan of the single precision bgm circuit on Virtex II FPGA and FP-
FPGA. Area is significantly reduced by introducing coarse-grained units.

126 Chapter 5 – Floating Point FPGA: Architecture and Modelling

grained units. The resulting circuit requires one coarse-grained unit and 1412 slices

and the delay is 10.2ns. The alternative, with two coarse-grained units and 763 slices,

has delay of 5.4ns.

In order to determine a suitable output loading of the coarse-grained unit, an em-

bedded multiplier is implemented using ASIC macrocell flow which has similar ar-

chitecture as the embedded multiplier used in Virtex II FPGA. The output loading of

each pin on the embedded multiplier is adjusted to match the same dynamic power

consumption as the one in Virtex II FPGA. We find that the output loading is 4.5pF.

Therefore this value is used as the output loading of the coarse-grained unit.

Table 5.5 summarises the dynamic power consumption of single precision FPFPGA

and Xilinx Virtex II FPGA. Our finding agrees with [Kuon 07] which suggests the

dynamic power consumption ratio of FPGA to ASIC is around 12. The dynamic power

consumption of the FPFPGA architecture stands between these ratios. Based on this

observation, we are more confident in the proposed power estimation flow.

Since the FPFPGA can run higher frequency than the Virtex II FPGA, it is expected

that for the same operation, the FPFPGA can complete faster. Their energy consump-

tion is different as the elapsed time is different. Figure 5.7 illustrates the ratio in

dynamic energy consumption between the FPFPGA and the Virtex II FPGA. The en-

ergy consumption for is determined by dynamic power consumption divided by the

operating frequency. On average, floating point applications implemented on FPFPGA

can reduce dynamic energy consumption by a factor of 14 compared to the Virtex II

FPGA.

5.6 Comparison with Previous Work

Modelling of embedded FPUs based on island-style FPGAs has been reported in [Beau 08]

and in Chapter 3. The improvements observed are summarised in Table 5.6. This

work adopts a more generic model in which a number of FPUs and LUTs form a

5.6 Comparison with Previous Work 127

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

bfly dscg fir mm3 ode bgm syn2 syn7

Benchmark Circuits
R

a
ti

o

Figure 5.7: Dynamic energy consumption ratio of single precision FPFPGA.

coarse-grained unit to allow higher density and better speed. In addition, FPUs and

LUTs are connected by reconfigurable bus-based routing to allow efficient datapath

logic mapping. Area saving is given by (1) an improved coarse-grained unit, (2) effi-

cient directional routing, (3) sharing configuration bits and (4) reduced functionality

FPUs. The methodology, benchmarks, tools and assumed architecture of our approach

compared with [Beau 08] are very different and a direct comparison cannot be made.

As similar circuits are used in Section 3.4 (embedded FPU design), a more detailed

analysis is performed. Table 5.7 presents the area distribution and the reported delay

between this work and the work in Chapter 3. One significant reduction is the size of

FPU. In embedded FPU design, a full FPU which could perform not only addition and

multiplication, but also division, square root and integer to floating point conversion

is employed. In this version, the FPU can only perform addition or multiplication.

Another significant reduction lies in the improved functionality of the coarse-grained

unit which can implement bus-based logic, buffering and multiplexing operations.

For embedded FPU design, such logic is implemented using fine-grained resources.

The delay reported in this work is better than the embedded FPU design because

of difference in pipeline stages. The embedded FPU design assumes one clock cycle

latency while this work assumes five clock cycles. Therefore, some applications which

require data dependency achieve better performance in the embedded FPU design.

128 Chapter 5 – Floating Point FPGA: Architecture and Modelling

5.7 Summary

We propose a customisable FPFPGA architecture which involves a combination of re-

configurable fine-grained and reconfigurable coarse-grained units optimised for float-

ing point computations. A parameterisable description is presented which allows us

to explore different configurations of this architecture. To provide a more accurate

evaluation, we adopt a methodology for estimating the effects of introducing embed-

ded blocks to commercial FPGA devices. The approach is vendor independent and

offers a rapid evaluation of arbitrary embedded blocks in existing FPGA devices. Us-

ing this approach, we show that the proposed FPFPGA enjoys improved speed and

density over a conventional FPGA for floating point intensive applications. The area

can be reduced by 25 times, the frequency is increased by 4 times and dynamic en-

ergy consumption is reduced by 14 times on average when comparing the proposed

architecture with an existing commercial FPGA device.

5.7 Summary 129

Si
ng

le
pr

ec
is

io
n

FP
FP

G
A

XC
2V

30
00

-6
-F

F1
15

2
R

ed
uc

ti
on

C
ir

cu
it

nu
m

be
r

C
G

U
ar

ea
FG

U
ar

ea
To

ta
lA

re
a

D
el

ay
FP

U
ar

ea
Lo

gi
c

ar
ea

To
ta

lA
re

a
D

el
ay

A
re

a
D

el
ay

of
C

G
U

(L
C

)
(L

C
)

(L
C

)
(n

s)
(L

C
)

(L
C

)
(L

C
)

(n
s)

(t
im

es
)

(t
im

es
)

bfl
y

2
24

4
(0

.9
%

)
21

2
(

0.
74

%
)

45
6

(1
.6

%
)

2.
92

11
,6

78
(4

1%
)

98
8

(3
.4

%
)

12
,6

66
(4

4%
)

11
.6

27
.8

3.
99

ds
cg

2
24

4
(0

.9
%

)
35

2
(1

.2
3%

)
59

6
(2

.1
%

)
2.

92
8,

83
8

(3
1%

)
40

6
(1

.4
%

)
9,

24
4

(3
2%

)
11

.3
15

.5
3.

88
fir

2
24

4
(0

.9
%

)
14

(0
.0

5%
)

25
8

(0
.9

%
)

3.
20

10
,1

18
(3

5%
)

21
8

(0
.8

%
)

10
,3

36
(3

6%
)

11
.2

40
.1

3.
51

m
m

3
2

24
4

(0
.9

%
)

26
8

(0
.9

3%
)

51
2

(1
.8

%
)

3.
86

8,
00

4
(2

8%
)

1,
01

0
(3

.5
%

)
9,

01
4

(3
1%

)
11

.8
17

.6
3.

06
od

e
2

24
4

(0
.9

%
)

38
(0

.1
3%

)
28

2
(1

.0
%

)
3.

24
6,

65
8

(2
3%

)
28

2
(1

.0
%

)
6,

94
2

(2
4%

)
11

.1
24

.6
3.

44
bg

m
7

85
4

(3
.0

%
)

64
6

(2
.2

5%
)

1,
50

0
(5

.2
%

)
4.

52
27

,8
56

(9
7%

)
81

2
(2

.8
%

)
28

,6
68

(1
00

%
)

13
.9

19
.1

3.
08

sy
n2

3
36

6
(1

.3
%

)
0

(0
.0

%
)

36
6

(1
.3

%
)

2.
93

11
,9

66
(4

2%
)

0
(0

.0
%

)
11

,9
66

(4
2%

)
11

.4
32

.7
3.

90
sy

n7
∗

16
1,

95
2

(6
.8

%
)

0
(0

.0
%

)
1,

95
2

(6
.8

%
)

2.
93

61
,2

50
(2

14
%

)
0

(0
.0

%
)

61
,2

50
(2

14
%

)
13

.1
31

.4
4.

47
G

eo
m

et
ri

c
M

ea
n:

24
.9

3.
64

(a
)

Si
ng

le
pr

ec
is

io
n

FP
FP

G
A

re
su

lt
s.
∗ C

ir
cu

it
sy

n7
ca

nn
ot

be
fit

te
d

in
a

XC
2V

30
00

-6
de

vi
ce

.
Th

e
ar

ea
an

d
th

e
de

la
y

ar
e

ob
ta

in
ed

by
im

pl
em

en
ti

ng
on

a
XC

2V
80

00
-5

de
vi

ce
.

D
ou

bl
e

pr
ec

is
io

n
FP

FP
G

A
XC

2V
60

00
-6

-F
F1

15
2

R
ed

uc
ti

on
C

ir
cu

it
nu

m
be

r
C

G
U

ar
ea

FG
U

ar
ea

To
ta

lA
re

a
D

el
ay

FP
U

ar
ea

Lo
gi

c
ar

ea
To

ta
lA

re
a

D
el

ay
A

re
a

D
el

ay
of

C
G

U
(L

C
)

(L
C

)
(L

C
)

(n
s)

(L
C

)
(L

C
)

(L
C

)
(n

s)
(t

im
es

)
(t

im
es

)
bfl

y
2

50
4

(0
.7

%
)

40
2

(
0.

74
%

)
90

6
(1

.3
%

)
4.

42
27

,3
06

(4
0%

)
1,

92
6

(2
.9

%
)

29
,2

32
(4

3%
)

21
.7

32
.3

4.
91

ds
cg

2
50

4
(0

.7
%

)
72

6
(

1.
07

%
)

1,
23

0
(1

.8
%

)
4.

45
17

,9
68

(2
7%

)
40

4
(0

.6
%

)
18

,3
72

(2
7%

)
17

.3
14

.9
3.

89
fir

2
50

4
(0

.7
%

)
12

(
0.

02
%

)
51

6
(0

.8
%

)
4.

38
20

,2
90

(3
0%

)
33

0
(0

.5
%

)
20

,6
20

(3
1%

)
18

.0
40

.0
4.

11
m

m
3

2
50

4
(0

.7
%

)
45

8
(

0.
68

%
)

96
2

(1
.4

%
)

4.
25

15
,0

58
(2

2%
)

1,
45

4
(2

.2
%

)
16

,5
12

(2
4%

)
17

.1
17

.2
4.

03
od

e
2

50
4

(0
.7

%
)

44
(

0.
07

%
)

54
8

(0
.8

%
)

4.
27

13
,5

88
(2

0%
)

47
8

(0
.7

%
)

14
,0

66
(2

1%
)

18
.6

25
.7

4.
35

bg
m

7
1,

76
4

(2
.6

%
)

64
2

(
0.

95
%

)
24

06
(1

.0
%

)
4.

55
65

,8
36

(9
7%

)
39

8
(0

.6
%

)
66

,2
34

(9
8%

)
22

.0
27

.5
4.

84
sy

n2
3

75
6

(1
.1

%
)

0
(

0%
)

75
6

(1
.1

%
)

4.
47

24
,0

32
(3

6%
)

0
(0

%
)

24
,0

32
(3

6%
)

19
.0

31
.8

4.
26

G
eo

m
et

ri
c

M
ea

n:
25

.7
4.

33

(b
)

D
ou

bl
e

pr
ec

is
io

n
FP

FP
G

A
re

su
lt

s.
C

ir
cu

it
sy

n7
is

om
it

te
d

si
nc

e
it

ca
nn

ot
be

fit
te

d
on

an
y

Vi
rt

ex
II

FP
G

A
de

vi
ce

.

Ta
bl

e
5.

4:
FP

FP
G

A
im

pl
em

en
ta

ti
on

re
su

lt
s.

Va
lu

es
in

th
e

br
ac

ke
ts

in
di

ca
te

th
e

pe
rc

en
ta

ge
s

of
lo

gi
c

ce
ll

us
ed

in
co

rr
es

po
nd

in
g

FP
G

A
de

vi
ce

.
C

G
U

st
an

ds
fo

r
co

ar
se

-g
ra

in
ed

un
it

an
d

FG
U

st
an

ds
fo

r
fin

e-
gr

ai
ne

d
un

it
.

130 Chapter 5 – Floating Point FPGA: Architecture and Modelling

FPFPGA XC2V3000-6
Circuit # of Power Frequency Power Frequency Ratio

CGU (mW) (MHz) (mW) (MHz)

bfly 2 204 343 791 86 3.9
dscg 2 185 343 609 88 3.3
fir 2 130 310 674 89 5.2

mm3 2 137 259 544 85 4.0
ode 2 135 309 458 90 3.4
bgm 7 398 221 1,806 79 4.5
syn2 3 204 341 781 88 3.8
syn7∗ 16 1,084 342 3,441 76 3.2

Geometric Mean: 3.9

Table 5.5: Power estimations. ∗Circuit syn7 cannot fit in a XC2V3000-6 FPGA so the
power number of FPGA implementation is obtained from a XC2V8000-5 FPGA.

Floating point
FPGA

Embedded FPU
(Chapter 3)

Beauchamp
[Beau 08]

Area
Reduction

25 2.75 2.21

Speedup 4.0 5.7 1.33

Data format
Single/double

precision
Double precision Double precision

Modelling
flow

Standard
macrocell, VEB

Estimation based
on Blue gene, VEB

Estimation based
on Pentium 4, VPR

Floating point
operator

Multiplier, adder
with reconfigurable

interconnect and
wordblocks

FPU based on Blue
Gene

Multiply-and-add
with reconfigurable

interconnect

Table 5.6: Comparison of floating point reconfigurable fabric. Area reduction and
speedup are compared to an FPGA device with embedded multiplier.

This work Embedded FPU
CGU area FGU area Delay FPU area FGU area Delay

(LC) (LC) (ns) (LC) (LC) (ns)

bfly 504 402 4.42 7,328 4,490 7.62
dscg 504 726 4.45 5,496 1,192 7.34
fir4 504 12 4.38 6,412 1,442 7.32

mm3 504 458 4.25 4,580 3,600 7.58
ode 504 44 4.27 4,580 1,224 7.62

Table 5.7: Comparison to previous embedded FPU model for double precision floating
point benchmarks.

Chapter 6

CAD Tools for Floating Point FPGA

6.1 Introduction

While we have studied the performance of architecture of FPFPGA in Chapter 5, all

the benchmark circuits are mapped to the FPFPGA manually. Although such mapping

can usually produce high quality results on small circuits, the process is tedious and

error-prone when applications become larger. The motivation of this chapter is to

introduce various computer aid design (CAD) tools to address the issue of mapping

applications into FPFPGA, especially for the coarse-grained units in FPFPGA.

A number of CAD tools have been employed to design and model FPFPGA devices.

However, many of them can be categorised as electronic design automation (EDA)

tools which offer physical level or low level automation. For instance, Chapter 3

employs standard FPGA design tools to model FPFPGA, and Chapter 4 and 5 employ

ASIC design tools to develop datapath FPGA fabric and coarse-grained units.

Since FPFPGA architecture shares the same fine-grained units and routing architec-

ture as standard FPGA devices, most EDA tools for standard FPGA devices, including

synthesis tools, place and route tools, timing analysis tools and even power analy-

sis tools can be reused on FPFPGA. However, the tools do not support user-defined

132 Chapter 6 – CAD Tools for Floating Point FPGA

coarse-grained units in the FPFPGA, and consequently, mapping circuits into coarse-

grained units has to be done manually. This chapter focuses on high level aspects

of designing applications on FPFPGA, in other words, how to “program” FPFPGA,

especially for the coarse-grained units effectively.

A standard FPGA design flow usually begins with VHDL or Verilog description of a

circuit. The description can either be a structural or behavioural one. A synthesis

tool, after processing such descriptions, can produce a physical netlist of target FPGA

and the netlist is ready for place and route. During the process, the tool parses the de-

scriptions, translates them to Boolean logic, decomposes the logic into a set of Boolean

equations, associates each Boolean equation into LUTs, and produces a netlist which

contains information about the connection and configuration of each occupied LUT.

The place and route tool, which takes the netlist as input, places the LUTs to suitable

locations on the FPGA devices, and perform routing and timing analysis sequentially.

After place and route, the bitstream generator produces a bitstream which contains

location and configuration of every LUT, connection box and routing switch of the tar-

get FPGA. The bitstream represents the application circuit implemented on the FPGA

device and can be downloaded to the FPGA to perform required functions.

This design flow, however, can usually be applied to FPGA with fine-grained units

only. Although most standard FPGA devices consist of heterogeneous components

such as multipliers or block memory, the design flow has limited support for them.

For instance, block memory can be instantiated either explicitly specified in structural

descriptions or a unique representation of behavioural descriptions. However, when

heterogeneous components become more flexible and reconfigurable such as CGUs

in FPFPGAs, users have to explicitly instantiate the components, connect the compo-

nents to other fine-grained logic and configure the components, and traditional flow

has no support for these.

High level synthesis employs another approach to translate applications into circuits

implemented on FPGA devices. Instead of using HDL, the design entry is variation

6.1 Introduction 133

of high level language such as C or Perl. Handel-C [Agil 07] is one of the typical

examples in this category. The advantage of this approach is that application designers

do not require to fully understand the architecture of the FPGA in order to utilise

the performance offered by FPGA effectively. In addition, this approach can capture

certain coarse-grained operations for further optimisation and it is usually difficult to

discover when the same applications are represented in structural HDL. For instance,

it is easy to extract floating point multiplication from a C description by looking for a

“∗” operator. On the contrary, floating point multiplication represented by thousand

of Boolean equations is obscured and difficult to extract.

A hardware compiler does not only reduce the effort of application designers, it is

also beneficial to the development of the FPFPGA itself. When searching for suit-

able FPFPGA architecture by exploration, for example, one may want to explore the

trade-off when more floating point multipliers are included in the coarse-grained unit,

it is inevitable to write benchmark circuits for each set of architecture since bench-

mark circuits represented as HDL are architecture-specific. It is desirable to have an

architecture-aware hardware compiler, which can produce a netlist for each bench-

mark application based on different architectural parameters of an FPFPGA. Architec-

ture designers do not need to rewrite the benchmark when the FPFPGA architecture is

changed. Rather, the designers just need to compile the benchmark applications writ-

ten in high level descriptions with another set of architectural parameters to obtain

benchmark circuits for evaluation.

In this work, we propose an approach to translate floating point applications into cir-

cuits implemented on FPFPGA device by adopting high level synthesis approach and

employing high level language as the design entry. In particular, we demonstrate a

technology mapper which translates a dataflow graph into a FPFPGA netlist in VHDL,

in which the dataflow graph can be obtained by processing high level descriptions in

other high level synthesis tool such as Trident [Trip 07] or the fly compiler [Ho 02b].

The chapter is organised as follows. Section 6.2 suggests the requirements of a desired

134 Chapter 6 – CAD Tools for Floating Point FPGA

compiler for FPFPGA devices. Section 6.3 illustrates the algorithm of the technology

mapper. Section 6.4 discusses the integration into existing high level synthesis tools

and results are presented in Section 6.5. Section 6.6 provides concluding remarks.

6.2 Requirements

The benchmarks in previous chapters are created by translating circuits from high

level descriptions to structural descriptions manually. The mapping process, while it

is tedious, helps us to identify the requirements of high level synthesis tool for FPFPGA

as listed below.

1. The compiler should contain a set of pre-defined built-in functions which rep-

resent the functionality in the coarse-grained unit. For example, the compiler

can provide floating point functions such as fadd(), fmul() (or even better,

overloaded operators such as “+” or “*”) which associate with the floating op-

erators in the coarse-grained unit. This feature allows application designers to

infer the coarse-grained units easily.

2. It should have the ability to differentiate the control logic and the datapath.

This feature would allow the technology mapper to handle the control logic and

the datapath separately. Since the control logic can be efficiently implemented

using the fine-grained logic, a standard hardware compilation technique such

as [Page 91] can be used. The datapath, which is usually much more compli-

cated, can be mapped to coarse-grained units whenever it is possible.

3. The compiler should contain an architecture-aware technology mapper for the

coarse-grained architecture. Since the FPFPGA architecture is customisable

according to the applications domain, the corresponding technology mapper

should map to devices with differing amounts of coarse-grained resources. For

example, the technology mapper should be aware of the number of floating

6.2 Requirements 135

point operator in a coarse-grained unit so it can fully utilise all the operators

in a unit. This feature would allow FPGA designers to evaluate new architec-

tures effectively by compiling benchmark circuits with modified architectural

parameters.

4. The compiler should contain an intelligent resource allocation algorithm. It

should be aware of the functionality of the coarse-grained unit and decide if

the given operation is best implemented by coarse-grained units or fine-grained

units. For example, if the compiler receives a “square root” instruction but there

is no square root function in the coarse-grained units, the allocation algorithm

can infer a square root operator using fine-grained unit instead.

5. Support is required for bitstream generation for coarse-grained units. Such a

feature is necessary to determine the delay of a mapped coarse-grained unit.

It should be noted that some requirements, such as Requirement 1, have been studied

in other contexts [Agil 08, Ho 02b], and Requirement 2 has been addressed in [Trip 07]

in which the authors propose a compiler that can produce separate circuits for control

logic and datapath for floating point applications. Requirement 3, 4 and 5 are new,

and are specific to our architecture, and they are addressed in Section 6.3.

We decide not to develop a high level synthesis tool from scratch. Instead, we focus on

components dedicated to FPFPGA such as the technology mapper and the bitstream

generator. There are several reasons for this. First of all, because FPFPGA employs

the same fine-grained units and fine-grained routing architecture as standard FPGA

devices, most existing high level synthesis technology can still be applicable to FPFP-

GAs. For instance, standard components appearing in most high level synthesis tool

such as front-end (parsing modules such as lexical analysis, abstract syntax tree con-

struction), middle-end (optimisation modules such as static analysis, loop unrolling,

pipelining, resource scheduling, dataflow graph generation) and back-end (code gen-

eration modules such as datapath construction, state machine construction, bitstream

136 Chapter 6 – CAD Tools for Floating Point FPGA

generation) can be reused and optimisations from those tools are still valid in FPFPGA

in most cases. With minor modification, those tools can capture floating point oper-

ations provided that the corresponding high level language supports floating point

operations natively.

Most high level design tools involve a datapath generation procedure. The procedure

usually accepts a dataflow graph as an intermediate representation of the applica-

tion and converts the dataflow graphs into corresponding components in FPGA. The

dataflow graph is usually the kernel of the application such as inner loops. By manip-

ulating the intermediate representation, we can integrate the technology mapper into

existing high level synthesis tool.

6.3 Technology mapper

6.3.1 Overview

Dataflow graph

Technology

Mapper

a b

+

3 input bus

4 output bus

3 adders

2 multipliers

...

Architectural

description
U0: cgu port map(…);

U1: cgu port map(…);

Interconnet in HDL

U0:001101011..

U1:110101011..

Bitstreams

Figure 6.1: Logic flow of the technology mapper.

Figure 6.1 illustrates the logic flow. The mapper requires a specification of the coarse-

grained unit to map floating point applications onto it. As coarse-grained units adopt

parameterised design flow, the technology mapper has to consider the architectural

description of the coarse-grained unit before mapping the application circuits. The ar-

6.3 Technology mapper 137

chitectural description includes type and number of floating point operators, number

of input and output buses, number of feedback registers and the number of generic

wordblocks. The descriptions also include the placement sequence of the generic

wordblocks and the floating point operators as they may affect the routing configura-

tion during mapping. Once the architecture of the coarse-grained unit is defined in

the mapper, the number of the coarse-grained units in the FPFPGA has to be specified

as this is a resource constraint.

Because of the customisable nature of FPFPGA, it should be noted that an FPFPGA

allows different combination of coarse-grained unit. As a result, the mapper allows

more than one type of coarse-grained unit. For example, the mapper allows an FP-

FPGA to have 3 type-A coarse-grained units, where each type-A coarse-grained unit

has 4 floating point adders and 3 type-B coarse-grained units, and each type-B coarse-

grained unit has 4 floating point multipliers in the mapper.

After the architecture of the FPFPGA is specified, the mapper can take a dataflow

graph as an input and produce a mapped design on the FPFPGA. The mapped design

consists of placed and routed configuration in every instantiated coarse-grained unit,

configuration of the computation units implemented by fine-grained units, and the

interconnection between them. The outputs of the mapper are a VHDL description

which describes how the coarse-grained units and soft-cores (circuits implemented

on fine-grained units) are connected and bitstreams for every coarse-grained unit and

how they should be configured.

Each node on the dataflow graph represents a floating point operation in an applica-

tion. The functionality of the node is not limited by the architecture of the coarse-

grained unit. For example, a node can represent a square root operation but the

coarse-grained units may not be able to support this. The dataflow graph for the

mapper is represented as an assembly-language-like format. For example, the for-

mula z =
p

a+ b× c + d × g can be expressed as a dataflow graph in Figure 6.2.

The mapping algorithm of the mapper is based on a greedy search. While this may

138 Chapter 6 – CAD Tools for Floating Point FPGA

fadd tmp1, a, b

fadd tmp2, c, d

fmul tmp3, tmp1, tmp2

fsrt tmp4, tmp3

fmul z, tmp4, g

+

a

g

+

c d

×

√
×

b

z

tmp1tmp2

tmp3

tmp4

Figure 6.2: Sample dataflow graph and its representation.

not produce optimal solution, we find the quality of mapping results is acceptable. It

is elaborated in detail in Section 6.5.

The mapper is configured for area-saving and optimises the density of nodes mapped

to a coarse-grained unit. The mapper processes nodes sequentially from the text

input. When we map the node to a coarse-grained unit, we consider the following

conditions:

1. Location of input – the mapper tries to map the node to the same coarse-grained

unit of the input block.

2. Functionality of the coarse-grained units – the mapper may instantiate soft-cores

outside coarse-grained units if none of them support the operation.

3. Availability of the coarse-grained units – the mapper may instantiate soft-cores

outside coarse-grained units if all the coarse-grained units are used up.

4. Number of input bus of the coarse-grained unit – if there is no input available

for the coarse-grained unit, the mapper may instantiate new coarse-grained unit

for new operation.

5. The location of the floating point operators – feedback registers in the coarse-

grained unit may be inferred if the operation requires feedback path.

6.3 Technology mapper 139

6. Number of output bus of the coarse-grained unit – if the output bus is used up,

some nets cannot be routed to other coarse-grained unit. This may result in

unroutable design and backtracking is required to resolve this issue.

The algorithm presented in Section 6.3.2 addresses all the conditions listed above.

6.3.2 Algorithm

The technology mapper employs object oriented design approach. Several objects

are involved when designing the algorithms. In particular, wordblock represents a

wordblock in a coarse-grained unit. Attributes of wordblock include a name, which

represents the output net name of the wordblock, functionality (such as generic word-

block, multiplier or adder), configurations (such as registered output), an occupied

flag to identify if the block is occupied, and input net names. feedback represents a

feedback register. It has three attributes including a name, an input net name and an

occupied flag.

A coarse-grained unit is another object which represents the configuration of

a coarse-grained unit. It contains a list of wordblocks, a list of feedback registers,

a list of input net names and a list of output net names. One can define its own

FPFPGA for technology mapping by creating instances of coarse-grained unit with

different configuration of wordblocks. The technology mapper, which processes a

list of coarse-grained unit instances and the dataflow graph, generates netlists which

contain configured coarse-grained unit instances and the routing between them. The

configured coarse-grained unit instances can then be used for HDL and bitstream

generation. The following algorithms are used in the technology mapper.

• searchnet (Listing 3)

– input: a net name, a list of coarse-grained units

– output: index of a coarse-grained unit, index of a wordblock

140 Chapter 6 – CAD Tools for Floating Point FPGA

– functionality: locates a wordblock in a specific coarse-grained unit which con-

tains the given net name

• cgumap (Listing 4)

– input: a node, a specific coarse-grained unit

– output: a status code which indicates if the operation success

– functionality: attempts to map the operation specified in the node to coarse-

grained unit

• cgugenericmap (Listing 5)

– input: a node, a list of coarse-grained unit

– output: a status code which indicates if the operation success

– functionality: attempts to map the operation specified in one of an available

coarse-grained unit

• addunary, addbinary, addternary (Listing 6)

– input: a node, a list of coarse-grained unit

– output: a status code which indicates if the operation success

– functionality: attempts to add the operation specific in the node to coarse-

grained unit when locations of the operations are considered. addunary, addbinary

and addternary assumes one, two and three input operands respectively.

• techmap (Listing 7)

– input: direct cyclic graph, a list of coarse-grained units

– output: a list of configured coarse-grained unit, and a direct cyclic graph

– functionality: map the dataflow graph represented in input into both coarse-

grained units and fine-grained units

The algorithms associated to the functions are shown in Listing 3-7. The function

searchnet is a helper function which returns the location of a net specified in the

input argument. It is done by scanning all the wordblocks in every coarse-grained

unit.

6.3 Technology mapper 141

Listing 3: searchnet
Data: net name (net), list of coarse grained units (cgus)
Result: (d, b) in which the net is located at coarse-grained unit d, wordblock b
foreach coarse-grained unit (c) in (cgus) do1

if c contains net then2

d ⇐ index of c3

b ⇐ index of corresponding wordblock contains n4

return (d,b)5

end6

end7

return (ERROR_NOT_FOUND, ERROR_NOT_FOUND)8

Listing 4: cgumap
Data: k-input node (n), coarse grained unit (c)
Result: operation represented in node n is mapped to c and return status
input_l ist ⇐ list of input net name of n1

foreach wordblock (wb) in (c) do2

if wb is not occupied and wb can implement n then3

name of wb ⇐ name of n4

configure wb to implement n with registered output5

flag wb as occupied6

foreach net name (net) in (input_l ist) do7

(p,q)⇐ searchnet(net, c)8

if b = ERROR_NOT_FOUND then9

if c has no available input then10

route all net in input_l ist to output11

return ERROR_NOT_ENOUGH_INPUT12

else13

set available input of c to net14

end15

else if wordblock q precedes wb then16

if c has no available feedback register then17

route net to output18

return ERROR_NOT_ENOUGH_FEEDBACK19

end20

end21

configure wordblock q as unregistered output22

rename wordblock q to (net “comb”)23

find an unoccupied feedback register24

configure the feedback register with input net “comb” and output25

net
end26

end27

return SUCCESS28

end29

return ERROR_NO_SUITABLE_WORDBLOCK30

142 Chapter 6 – CAD Tools for Floating Point FPGA

Listing 5: cgugenericmap
Data: input node (n), a list of coarse-grained units (cgus)
Result: add n to the first coarse-grained unit in cgus that can implement n or

ERROR
foreach coarse-grained unit (c) in (cgus) do1

status ⇐ cgumap(n, c)2

if status = SUCCESS then3

return SUCCESS4

end5

end6

return ERROR_NO_SUITABLE_WORDBLOCK7

The function cgumap is to map a node to a specific coarse-grained unit. First the

function tries to identify an unused wordblock in the coarse-grained unit which can

implement the function specified in the node. If a suitable wordblock is found, it is

configured as necessary function and corresponding inputs are routed into that word-

block. If an input comes from another wordblock in the same coarse-grained unit, it

is routed internally. Because of the uni-directional nature of coarse-grained unit, if

the input nets precede to the suitable wordblock, feedback registers are inferred such

that the input signal can route back to the wordblock (Condition 6). If no suitable

wordblock is found, the function assumes the input is from outside and annotates the

input port of coarse-grained unit as the same name as the input name of the node.

If the mapper finds a suitable wordblock and maps the node without any error, it re-

turns SUCCESS. If the mapper cannot find a suitable wordblock to map the node, it re-

turns ERROR_NO_SUITABLE_WORDBLOCK, indicating the mapping is failed. There

are two other special cases. If feedback registers need to be inferred but none of

them are available, it results in error and returns ERROR_NOT_ENOUGH_FEEDBACK.

When the mapper assumes inputs come from input port but no input port is available,

the mapper returns ERROR_NOT_ENOUGH_INPUT. In both cases, the mapping for

this coarse-grained unit is aborted and the mapper routes required internal signals (if

any) to output ports.

The function cgugenericmap is to map a node to a list of coarse-grained unit. It

6.3 Technology mapper 143

Listing 6: addbinary
Data: 2-input node (n), a list of coarse-grained units (cgus)
Result: configured cgus with the operation represented in n, or return ERROR
in0⇐ first input of n1

in1⇐ second input of n2

(cguid0, b)⇐ searchnet(in0, cgus)3

(cguid1, b)⇐ searchnet(in1, cgus)4

add in0, in1 to global input list if they are not found in cgus5

if both in0 and in1 are not found in cgus then6

return cgugenericmap(n, cgus)7

end8

if in0 and in1 are in the same coarse-grained unit then9

c ⇐ cgus[cguid0]10

status ⇐ cgumap(n, c)11

if status ̸= SUCCESS then12

set first available output of c to in013

set second available output of c to in114

if no available output for in0 or in1 then15

return ERROR_NOT_ENOUGH_OUTPUT16

end17

return cgugenericmap(n, cgus);18

end19

end20

if in0 are found in cgus then21

c0 = cgus[cguid0]22

if cgumap(c0, n) = SUCCESS then23

return SUCCESS24

end25

if no available output for in0 then26

return ERROR_NOT_ENOUGH_OUTPUT27

end28

set first available output of c0 to in029

return cgugenericmap(n, cgus)30

end31

if in1 are found in cgus then32

c1 = cgus[cguid1]33

if cgumap(c1, n) = SUCCESS then34

return SUCCESS35

end36

if no available output for in1 then37

return ERROR_NOT_ENOUGH_OUTPUT38

end39

set first available output of c1 to in140

return cgugenericmap(n, cgus)41

end42

144 Chapter 6 – CAD Tools for Floating Point FPGA

Listing 7: techmap
Data: direct cyclic graph G, a list of coarse-grained unit cgus
Result: cgus represents subset of coarse-grained mapping of G and direct cyclic

graph g represents fine-grained mapping of G or return ERROR
foreach node (n) in graph (G) do1

k ⇐ number of input in n2

switch k do3

case 14

status ⇐ addunary(n, cgus)5

case 26

status ⇐ addbinary(n, cgus)7

case 38

status ⇐ addternary(n, cgus)9

otherwise10

return ERROR_INPUT11

end12

end13

if status ̸= SUCCESS then14

if status ̸= ERROR_NOT_ENOUGH_OUTPUT then15

add n to graph g16

else17

return status18

end19

end20

end21

return SUCCESS;22

6.3 Technology mapper 145

invokes cgumap iteratively on each coarse-grained unit until a suitable coarse-grained

unit is matched. The function is invoked when there is no better mapping available.

The functions addunary, addbinary, addternary are very similar to each other so

only addbinary is shown in Listing 6 . This function is to map a node to a list of

coarse-grained unit while the position is taken into account. In addbinary, it first

searches for coarse-grained unit which contains the associated input net. Since the

function assumes the input node has two inputs, one of the following four cases will

happen. A two-input node a1 ⇐ a2 f op a3 is used as an example to explain the

situation here.

1. Both inputs (a2, a3) are not found in all the coarse-grained unit – We assumed

the inputs are all from fine-grained unit so the algorithm adds the input to the

global input list. It then calls cgugenericmap to perform mapping.

2. One of the input nets (e.g. a2) is found in a coarse-grained unit – The input

net which is not in the coarse-grained units (a3) is added to the global input

list. The function then tries to map the node to the coarse-grained unit which

contains another input net (a2). If it fails, the function routes the net out of the

coarse-grained unit and annotates the output of that coarse-grained unit as the

same name as net a2. Generic mapping cgugenericmap is then performed.

3. Both inputs are found in the same coarse-grained unit – The function first tries

to map the node in that coarse-grained unit and internal routing is enforced.

If it is not, both inputs are then routed to the output and generic mapping

cgugenericmap is performed.

4. Input nets are found in different coarse-grained units. One net is routed out of a

coarse-grained unit and mapping is performed on another coarse-grained unit.

If it fails, both nets are routed to output and generic mapping cgugenericmap

is performed.

146 Chapter 6 – CAD Tools for Floating Point FPGA

The functions addunary and addternary employ the same logic flow as addbinary

to perform position-aware mapping. A coarse-grained unit which contains more in-

puts net has higher priority to perform mapping.

The function techmap is the top level function. techmap calls addunary or similar

functions on every node on the graph. In case the addunary or similar functions re-

turn ERROR, two scenarios may happen. ERROR_NO_SUITABLE_BLOCK is returned

when the mapper cannot find suitable coarse-grained unit for the node. It can be

solved by implementing the node in fine-grained unit. ERROR_NOT_ENOUGH_OUTPUT

is returned when the mapper cannot route the signal from coarse-grained unit to out-

put because all the output bus in that coarse-grained unit is occupied. This error is

critical as it means the net cannot be used outside the coarse-grained unit. It can

only be solved by backtracking. It can be applied to the unroutable net to trace how

the signal is originally formulated and certain operations are duplicated on a new

coarse-grained unit to reproduce the signal.

The coarse-grained unit designer can also consider increasing the number of output

of coarse-grained units. Redesign coarse-grained units by adding more floating point

operators or more output port can help to resolve both issues.

6.3.3 Bitstream Generator

The technology mapper produces two outputs. They are (1) interconnection of each

instantiated coarse-grained units and (2) configuration of each instantiated coarse-

grained units. Interconnection is represented in VHDL so that the description can

work with VEB flow and other high level synthesis tools. Configuration, however,

is described in Perl data structure to allow bitstream generator, which is written in

Perl, interpreting the configuration and generating the bitstream. An example of

configuration is given below:

6.3 Technology mapper 147

Configuration of a CGU represented in Perl data structure.

1 $s[0] = {

2 type => "wb",

3 sh => "no shift",

4 reg => "reg",

5 lut0 => "0000000000000000",

6 lut1 => "0000000000000000",

7 mux0 => "select A", #select A, select control

8 mux1 => "select carry", #select carry, select control

9 input0 => "feedback_bus_0",

10 input1 => "feedback_bus_1",

11 input2 => "feedback_bus_2",

12 };

13 ...

$s is an array of wordblocks. Each element in $s represents a configuration of each

wordblock. The bitstream generator parses the elements in the array iteratively and

produces a bitstream which corresponds to the ASIC implementation of the coarse-

grained units. While a bitstream is a long run of ‘0’ and ‘1’, the bitstream genera-

tor produces Synopsys Tcl script which can readily be used in timing analysis of the

coarse-grained units as mentioned in Section 5.4.1. An example of output given by

the bitstream generator is shown below:

Partial bitstream of a CGU represented in Synopsys Tcl script.

1 ...

2 # bit 32 : wb0: reg reg

3 set_case_analysis 1 u2000/config_reg[32]

4 # bit 33 : wb0: mux0 select A

5 set_case_analysis 0 u2000/config_reg[33]

6 # bit 34 : wb0: mux1 select control

7 set_case_analysis 1 u2000/config_reg[34]

8 ...

148 Chapter 6 – CAD Tools for Floating Point FPGA

6.3.4 Example

fmul

feedback registers

fadd faddfmul
tmp1

tmp2

tmp3

a
b c
d

fmul

feedback registers

fadd faddfmul
tmp1

tmp2

a
b c
d

fmul

feedback registers

fadd faddfmul

z

g

Floating point

square root implemented by

fine-grained unit

fmul

feedback registers

fadd faddfmul

tmp1 tmp2

a
b c
d

Mapped circuit after processing the node “fadd, tmp2, c, ,d”.

Mapped circuit after processing the node “fmul, tmp3 ,tmp2 ,tmp1”. Final circuit. Soft-core square root is instantiated

- Registered output

fmul - Floating point multiplier

fadd - Floating point adder

tmp1_comb

tmp2_comb

tmp3

tmp4

Figure 6.3: Mapping of equation z =
p

a+ b× c + d × g.

As an example, Figure 6.3 presents how the formula z =
p

a+ b× c + d×g is mapped

to the FPFPGA.

We assume there are two coarse-grained units in an FPFPGA and each coarse-grained

unit has 2 floating point adders and 2 floating point multipliers. The floating point

adders are located at second and forth column and floating point multipliers are lo-

cated at first and third column. Each coarse-grained unit has 4 input bus, 3 output

bus and 2 feedback registers.

Initially, the mapper receives the node “fadd tmp1, a, b”. It finds the first avail-

able coarse-grained unit which supports floating point addition and instantiate it.

Then the mapper connects net “a” and net “b” from input to the first available float-

ing point adder and annotates that adder as “tmp1”. The adder is configured as

registered output. Similar case happens at the next node “fadd tmp2, c, d”. The

mapper instantiates second floating point adder in the same coarse-grained unit and

routes net “c” and “d” from inputs to that adder. The adder is annotated as “tmp2”

and is output-registered.

6.4 Integration 149

The next node is “fmul tmp3, tmp1, tmp2”. Although all input buses has been

used in the first coarse-grained unit, the net “tmp1” and “tmp2” can both be found

in the first coarse-grained unit and at the same time floating point multiplier is avail-

able. Condition 1 applies and the mapper instantiates the first available floating point

multiplier in the same coarse-grained unit. The mapper finds that “tmp1” and “tmp2”

are preceded to “tmp3” so feedback paths are required. Condition 5 applies and a

feedback path is formulated. In this case, the floating point adders are configured as

unregistered output and are renamed to “tmp1_comb” and “tmp2_comb” respectively.

The outputs of the floating point adders are routed to available feedback registers

which are then annotated as “tmp1” and “tmp2”. After such modification, mapper

can route “tmp1” and “tmp2” to “tmp3”.

When mapping the node “fsrt tmp4, tmp3”, the mapper finds that none of the

coarse-grained unit supports square root operation. So the mapper decides to instan-

tiate soft-core to handle this. It first routes the net “tmp3” to the output of the first

coarse-grained unit. It then instantiates a soft-core which can perform square root

operation and connects the output of coarse-grained unit to the input of the soft-core.

Finally, the output of the soft-core is annotated as “tmp4”.

The last node is “fmul z, tmp5, g”. Although the first coarse-grained unit still has

an unused floating point multiplier, the input-bus is used up so condition 4 applies and

second coarse-grained unit is instantiated. The mapper routes net “g” and “tmp3” to

the coarse-grained unit and the first available floating point multiplier is instantiated

and its output is annotated as “z”.

6.4 Integration

This section studies various high level synthesis tools and discusses the opportunities

to incorporate our FPFPGA technology mapper to them. Although there are plenty

of high level synthesis tools, two hardware compilers are assessed. They are Tri-

150 Chapter 6 – CAD Tools for Floating Point FPGA

dent [Trip 07] and the fly compiler [Ho 02b]. We choose them because of two rea-

sons. First, all of them support floating point operators natively. The semantics of

the languages supported by the tools allows variables can be implicitly or explicitly

declared as floating point data. The authors of these tools have considered supporting

floating point operations initially. Second, we have access to the source code of those

compilers, allowing us to study the algorithm in depth.

It should be noted that the integration technique discussed in this section can gener-

ally be applicable to other high level synthesis tools who wish to support FPFPGA. The

integration process involves two steps. The first step is to retrieve a dataflow graph

from the compiler so the graph can be read by the technology mapper. This process

occurs just before the datapath generation of the original flow. The second step is

to integrate the datapath generated by the technology mapper into original datapath

and control circuits.

6.4.1 Trident

Trident [Trip 07] is a compiler dedicated to designing floating point algorithms on

FPGA. Using C language as design entry, Trident can exploit parallelism available in

the input description. Trident also applies conventional compiler optimisation and

scheduling techniques. Since the open source nature of Trident, we can study the

algorithms and integrate the technology mapper with minor effort.

As we mention before, the first step is to discover the dataflow graph and map the

graph to coarse-grained units. Trident has its own internal intermediate represen-

tation, yet the representation uses internally and does not store any intermediate

representation to persistent media. In order to capture the dataflow graph in Trident,

we modify the datapath generator routines in Trident.

Since Trident is written in Java language, the technology mapper is written in Java

to achieve better integration. Although hundreds of class have defined in Trident, we

6.4 Integration 151

are only interested in those classes resided in fp.synthesis package, in which the

package contains methods dedicated to datapath generation. In particular,

DataPathCircuitGenerator is a class which contains an instance method generate()

to interpret dataflow graphs represented as a series of input arguments.

We modify the instance method generate() so we can gather the dataflow graph

by intercepting the argument appearing in the method. We are interested in the

following nodes that can be implemented in coarse-grained units.

1. Load – A node represents an input of the dataflow graph. The technology

mapper adds the net name of the node to the global input list.

2. Store – A node represents an output of the dataflow graph. The technology

mapper adds the net name of the node to the global output list.

3. Unary – An 1-input node represents a 1-operand generic operation, such as

square root or reciprocal operations. Unary node can be mapped to a spe-

cialised block or fine-grained units.

4. Binary – A 2-input node represents a 2-operand generic operation, such as

addition or multiplication. Binary node can be mapped to a specialised block

or fine-grained units.

5. Test – A 2-input node represents a 2-operand comparison operation, such as

“equal to” or “less than” operations. Test node can usually be implemented as

a fixed point subtraction using a generic wordblock.

Once the dataflow graph is recovered, we can apply the algorithm described in Sec-

tion 6.3.2 to implement datapath into coarse-grained units.

The second step is to modify the compiler which generates correct control signal

to the coarse-grained units. Fortunately, Trident supports third-party floating point

operators with different latency, area and speed. It is done by reading a template file

152 Chapter 6 – CAD Tools for Floating Point FPGA

describing the latency, area and speed of the floating point operators. By modifying

this file, Trident can recognise the latency of each floating point operation in the

coarse-grained unit and produces the correct control signals.

Once Trident generates VHDL descriptions for both datapath and control signal cir-

cuits, users are required to manually connect the entity from the technology mapper

to the control circuit entity in Trident using port map keyword. This process has not

been automated yet.

6.4.2 The fly compiler

The fly compiler [Ho 02b] is a compiler dedicated to rapid system prototyping re-

search. It emphasises on modifiability by using relatively simple design – the whole

source code can be fitted into 2 pages. The backbone of the compiler is a recursive de-

scent parser which fires specific operations when certain patterns are matched. Those

operations include datapath and control signal generations. The fly compiler accepts

Perl-like description and produces VHDL as output.

Since the fly compiler is an one-pass compiler, there is no intermediate representation

in the fly compiler. In order to integrate the technology mapper into the fly compiler,

the first step is to modify the fly compiler to produce a dataflow graph instead of

instantiating floating point operators when operations involving floating point data

are encountered. The dataflow graph can then be used by the technology mapper to

produce configured and mapped coarse-grained units.

The fly compiler is written in Perl and the “Parse::RecDescent” package is em-

ployed to implement the top-down recursive text parser which is the core of the fly

compiler. The fly compiler has defined a set of grammar specification which consists

of rules and the associated subroutines. The subroutines are executed when the rules

are matched to generate datapath and control circuits.

The following list shows the rules that are relevant. It defines the floating point

6.4 Integration 153

operations in the Perl description.

The Fly Grammar Related to Floating Point Operation.

1 fop: ’.*’ | ’.+’ | ’.-’

2 var: /\$[a-z][\w\[\]]*/

3 fexpr: var fop var

4 asgn: var ’=’ fexpr ’;’

Rule fop defines a set of floating point operators. Rule var defines the naming con-

vention of a floating point variable. Rule fexpr defines the floating point expression

and Rule asgn defines a statement in the fly compiler. For example, the parser will

trigger the subroutines of fexpr and asgn sequentially when the statement $d1 =

$d2 .* $d3; are parsed.

In the original fly compiler implementation, Rule fexpr instantiates floating point

components and the associated control signals in VHDL. In this work, instead of in-

stantiating floating point components, the operations are written in a file representing

a dataflow graph as shown in Figure 6.2. Then we can use the techmap algorithm

to generate mapped circuits. As an example, the modified compiler produces the

following file when parsing the statement $d1 = $d2 .* $d3;

Sample Output After Modification.

1 fmul tmp1, d2, d3

2 fmov d1, tmp1

In the second step, we need to integrate the control signal into the coarse-grained

units. The fly compiler uses one-hot encoding to construct state machine, in which

all computation blocks are associated with a start and a finish signal. Users are

required to design the same control signals for the datapath given by the technology

mapper. It is essentially an 1-bit FIFO which has the same latency as the configured

coarse-grained unit.

The technology mapper generates netlists in VHDL to explicitly instantiate required

coarse-grained units. Since the fly compiler generates VHDL descriptions of control

154 Chapter 6 – CAD Tools for Floating Point FPGA

logic and other computation logic such as fixed point computation, the integration

can be achieved by connecting these two VHDL descriptions using port map keyword

manually.

6.5 Results

Circuit number of number of Minimum Mapped Relative
adder multiplier CGU CGU Difference

bfly 4 4 2 2 0%
dscg 2 4 2 2 0%
fir 3 4 2 2 0%

mm3 2 3 2 2 0%
ode 2 2 2 2 0%
bgm 9 11 6 7 16%
syn2 5 4 3 3 0%
syn7 25 25 13 16 23%

Table 6.1: Performance of the technology mapper. Most circuits require minimum
number of coarse-grained unit (CGU).

There are several parameters to be specified in the construction of coarse-grained

unit. In this experiment, the following properties of the coarse-grained unit are as-

sumed: 3 input-buses, 4 output-buses, 4 feedback registers, 5 generic wordblocks,

2 floating point multipliers located in the second and fifth column, 2 floating point

adders located in the third and sixth column. The bus widths are all 32-bit and the

floating point operators are single precision. In addition Xilinx Virtex II 3000 FPGA

is chosen to be host fine-grained fabric for the FPFPGA as the technology process is

similar to the coarse-grained unit.

Eight benchmark circuits are used in this study. They are the same as those used in

Chapter 5. The kernels of the benchmarks are described as dataflow graphs and the

technology mapper is used to map the design. It shows that the mapper can map the

applications effectively in terms of the number of coarse-grained unit instantiated. For

most designs, the mapper can instantiate minimum amount of coarse-grained units. It

6.6 Summary 155

is determined by the number of floating point operators required divided by the num-

ber of floating point operators in a coarse-grained unit. Then the result is rounded up

to the nearest integer. Table 6.1 summarises the performance of the technology map-

per. It shows that only circuit syn7 and bgm require more coarse-grained units than

the minimum requirements. This is because some outputs of coarse-grained units are

used up so some of the signals cannot be routed. Consequently, the mapper has to

replicate some of the operations which increases the number of coarse-grained unit

required. It is expected that the utilisation rate of the coarse-grained unit can be

improved by increasing the number of output buses.

6.6 Summary

This chapter discusses various CAD tools which can assist users to design application

on FPFPGA devices. We have assessed different approaches to design applications on

FPFPGA such as traditional HDL approach and high level synthesis approach. The

traditional CAD tools appearing in standard FPGA devices can be reused on FPFPGA.

We also explore opportunities to adopt high level synthesis design flow on FPFPGA

devices. In particular, we propose architecture-aware technology mapper algorithms.

It is capable of producing configured coarse-grained unit from a dataflow graph which

represents the computation kernel of applications. We address the issue of integrating

such technology mapper on various high level synthesis tools such as Trident and the

fly compiler. Experiments show that the technology mapper is efficient and it can

infer minimum number of coarse-grained units in 6 out of 8 benchmark kernels.

Chapter 7

Conclusion

7.1 Summary of Achievements

In this work, we have proposed a platform to design reconfigurable devices for opti-

mising floating point applications. The platform consists of (1) a modelling methodol-

ogy which allows rapid estimation of the performance when arbitrary heterogeneous

blocks are embedded in existing standard FPGA, (2) a synthesisable FPGA fabric ded-

icated to datapath oriented operations, (3) a customisable coarse-grained unit em-

bedded in FPGA for accelerating floating point applications, and (4) an architecture-

aware technology mapper which can translate dataflow graphs into mapped circuits.

The mapper can be integrated into high level synthesis tools for designing applications

on the proposed reconfigurable platform.

It is challenging to compare the proposed architectures with existing architectures.

Variation between design tools on different FPGA architectures may yield completely

different results which are difficult to compare. Chapter 3 establishes a methodol-

ogy to address this issue. We propose a novel approach to remedy this problem by

introducing Virtual Embedded Block (VEB) design flow. By exploiting the vendor de-

sign tools, the flow allows comparison between existing FPGA and virtual FPGA with

arbitrary heterogeneous blocks under the same conditions (including design entry,

7.1 Summary of Achievements 157

architecture of fine-grained units, routing resources, synthesis algorithms, place and

route algorithms, timing analysis algorithms). This methodology helps us to produce

reliable results for comparison.

Before identifying suitable reconfigurable architecture for floating point applications,

we realise that most floating point applications are datapath oriented. By exploit-

ing this property, Chapter 4 proposes a synthesisable datapath FPGA architecture

which offers optimisation on bus-based logic. The architecture consists of general-

purpose LUTs in which the LUTs contain shared configuration bits to reduce silicon

area. Further area saving is given by bus-based routing and uni-directional channels.

By exploiting strong correlation between output pin locations and their destinations

in bus-based logic, few configuration bits are required to control the routing of a bus.

In addition, we adopt standard macrocell design flow and parameterised design flow

such that architecture exploration by parameter sweep is feasible.

Chapter 5 proposes a novel coarse-grained architecture which combines bus-based

reconfigurable datapaths and routing with ASIC floating point operator. The coarse-

grained units can be embedded in existing FPGA devices to form FPFPGA devices.

FPFPGAs can be customised according to domain-specific requirement before fabrica-

tion and can be reconfigured to implement different applications. For instance, one

can customise an FPFPGA by including a macrocell-based floating point divider and

a square root operator into the coarse-grained unit when the operations are required

in many times in a particular domain. The synthesisable design flow proposed in this

work for FPFPGA design allows us to achieve the customisability.

The performance given by FPFPGA is promising in terms of area, speed and power

consumption. In one particular implementation of FPFPGA, it is shown that the area

can be reduced by 25 times, the clock frequency is increased by 4 times and dynamic

energy consumption is reduced by 14 times on average when comparing the proposed

architecture with an existing commercial FPGA device. We believe the performance

can be further improved when custom layout design flow is employed in designing

158 Chapter 7 – Conclusion

coarse-grained units.

The usability of FPFPGA has been taken into account; the FPFPGA is difficult to use

if there are no CAD tools supporting it. If we consider the customisability aspect of

FPFPGA, the CAD tools are more complicated as the tools should be able to support

different customised versions of FPFPGA with little or no modification. Although the

FPFPGA can adopt traditional FPGA design flow using HDL, Chapter 6 proposes a

technology mapper to allow high level synthesis tools to produce circuits for FPFPGA

devices. Algorithms associated with the technology mappers are architecture-aware

in which the algorithms consider the architectural parameters of each coarse-grained

units in the FPFPGA during the mapping process. The technology mapper can produce

mapped circuits and bitstream which can be used in VEB modelling immediately. The

mapped circuits, which are described in VHDL, instantiate all the required coarse-

grained units and their interconnections, and can be used as benchmark while the

bitstream can be used for power and timing analysis of coarse-grained units. This

helps FPGA designer to explore different FPFPGA architectures without rewriting the

benchmark circuit. We also demonstrate how to integrate the technology mapper

into different high level synthesis tools. In particular, hardware compilers specially

designed for floating point applications such as Trident and the fly compiler have been

discussed.

The contributions described in Chapter 3 to 6 constitute an approach for designing

customisable and reconfigurable devices dedicated to floating point computations.

The devices can be customised in design phase (pre-fabrication) and can be reconfig-

ured in usage phase (post-fabrication).

Before device fabrication, the platform provides a rapid modelling flow which al-

lows designers to customise devices for specific application domains. After device

fabrication, devices can be reconfigured for different floating point applications. In

addition, the platform provides CAD tools for mapping applications represented in

high level languages into datapath and control signal circuitry. Using the tools, appli-

7.2 Future Work 159

cation designers can efficiently develop reconfigurable circuits on FPFPGA and obtain

improvements in speed, area, and power consumption.

FPGA device designers, while exploiting the VEB model, the standard macrocell de-

sign flow and the coarse-grained unit circuit generator, can produce different FPFPGA

models rapidly with different set of architectural parameters. The benchmark circuits

for performance evaluation are available by compiling their existing applications us-

ing the CAD tools with the same set of parameters. This design flow proposed in the

thesis is generic and can also be used in developing other FPGA devices with different

heterogeneous blocks.

7.2 Future Work

Although the thesis focuses on the development of FPFPGA devices, the methodology

and architecture delivered in this work leads to other interesting research area. This

section suggests some exciting future work which is derived from the contributions in

the thesis.

VEB Experiments

The methodology proposed in Chapter 3 is a novel approach to FPGA modelling

which can assess not only floating point operators but also arbitrary heterogeneous

blocks. This approach is effective when studying heterogeneous components on ex-

isting island-style FPGA architectures. For instance, one can use the same approach

to investigate the effects of embedding microprocessors into an FPGA and compare

them with PowerPC 405 [Xili 08a], which has appeared in certain FPGA devices such

as Virtex-II Pro and Virtex 4, soft-core (circuit implemented on fine-grained units)

microprocessors OpenSparc [Leon 07] and MicroBlaze [Xili 07].

The area and timing information of OpenSparc, for example, can be obtained from

synthesising the OpenSparc RTL description or from published information. We can

study the trade-off of OpenSparc by customising some features in OpenSparc such as

160 Chapter 7 – Conclusion

memory controller, floating point unit, memory management unit and so on. This al-

lows us to study the optimal architecture of OpenSparc processor embedded in FPGA

devices.

FPGA designers who are interested in networking applications can estimate the per-

formance of an FPGA when dedicated networking components such as packet filters

are embedded.

The design flow has currently been used to study other heterogeneous components

embedded in FPGAs. Chong and Parameswaran [Chon 09] have applied the same ap-

proach to assess a multi-mode embedded floating point unit for FPGA. The essence of

this approach is that potentially any embedded block can be modelled without actu-

ally fabricating the circuit. This greatly reduces both cost and time when conducting

similar research.

Floating Point FPGA for High Performance Computing

This work introduces FPFPGA for general floating point applications. It can be further

tailor-made to accelerate domain-specific floating point applications. For instance,

high performance computing (HPC) applications can be good candidates to imple-

ment on customised FPFPGA devices. Many of them require a large amount of double

precision floating point operations and demand fast local cache.

The research can first concentrate on commonly used routines for HPC. We can first

study the HPC Challenge benchmarks suite [Lusz 06]. The suite provides well known

computation kernels such as matrix-matrix multiply and Fast Fourier Transform (FFT).

The suite also offers the LINPACK benchmark [Dong 03] which analyses and solves

linear equations and linear least-squares problems. LINPACK is considered as a basic

requirement when evaluating a HPC system. All the tests stress the floating point

performance of a system hence they are good candidates to be representative appli-

cations for FPFPGA customised for HPC. These benchmarks can be mapped to FP-

FPGA by using high level synthesise tools containing our technology mapper. We can

explore different architectural parameters of FPFPGA by adjusting the parameters,

7.2 Future Work 161

generating new FPFPGA coarse-grained units, compiling the benchmarks, evaluating

the performance with VEB flow iteratively. Different combinations and configurations

of coarse-grained units which involve floating point division, square root or other

elementary function can also be considered.

FPFPGA and GPU Devices

The FPFPGA device shares similar building blocks with Graphic Processing Unit (GPU)

in certain ways. Both of them possess large amount of floating point operators and

specialise in floating point computations. However, their architecture is different from

each other. For instance, there are no reconfigurable components in GPU so all the

computations are done by software programming. On the contrary, GPU has better

support in accessing local and off-chip memory and programming model [Nvid 09].

These advantages enable GPU to be one of the desired platforms for accelerating

floating point applications.

However, by utilising reconfigurable architecture on GPU, it is exciting to combine the

essence of FPFPGA and GPU to evolve a novel architecture for floating point compu-

tations. Some research has currently been conducted in this direction. For instance,

Cope et al. [Cope 08] have explored opportunities to improve the performance of

GPU memory accesses by introducing reconfigurable hardware on it. The future work

can study the benefit and the trade-off when specific features implemented to the new

device. For example, one may want to include reconfigurable bus-based interconnect

into GPU in enhancing the flexibility or one may want to include dedicated memory

interface to FPFPGA to increase the bandwidth. We believe that the architecture of

GPU and FPFPGA can be improved by incorporating certain features of each other.

FPFPGA as IP blocks

Although we show that coarse-grained units in FPFPGA work well with existing fine-

grained units in FPGA, the coarse-grained units can be IP blocks integrated into other

devices. The idea is similar to the one discussed in Chapter 4, in which we have intro-

duced a datapath-oriented fabric embedded into SoC to enhance the post-fabrication

162 Chapter 7 – Conclusion

debugging ability. The following devices can be good candidates for embedding cus-

tomised coarse-grained units.

SoC device: Since the advancement of technology process, the current trend of SoC

development tends to include a dedicated floating point computation block to provide

more computation power. Although the usual practice is to embed a floating point co-

processor, there are several potential advantages to adopt customised coarse-grained

units over the traditional approach. For example, we can exploit the customisability

of the coarse-grained unit to design a coarse-grained unit dedicated to a particular ap-

plication domain. The coarse-grained unit may use fewer transistors while provides

the same functionality as a floating point coprocessor.

Coarse-grained FPGA: Some implementations of coarse-grained FPGAs allow integra-

tion of different coarse-grained fabric and we can investigate the benefit of em-

bedding coarse-grained units into those FPGA devices. Possible candidates include

ADRES [Mei 03] and RaPiD [Ebel 96] architectures. In ADRES architecture, the

coarse-grained units can be embedded as reconfigurable cells and the integration

allows ADRES to perform floating point computation more efficiently. In RaPiD ar-

chitecture, the coarse-grained unit can be embedded by attaching the reconfigurable

coarse-grained units on bus connectors.

VLIW (Very Long Instruction Word) processor: One major advantage of VLIW proces-

sors is that their instruction set allows multiple operations to be encoded in a single

instruction. Hence, a VLIW processor can control several computation cores in paral-

lel. This can be a good match with coarse-grained units. A recent study has reported

integration of reconfigurable hardware and VLIW processors [Hoar]. We can adopt

similar techniques to embed the coarse-grained units into a VLIW processor. We be-

lieve such integration allows the VLIW processor to fully utilise the computation ca-

pability of the coarse-grained units.

Bibliography

[Abra 06] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and
D. Miller. A Reconfigurable Design-for-Debug Infrastructure for SoCs.
In: ACM IEEE Design Automation Conference, pp. 7–12, June 2006.

[Agil 07] Agility Design Solution Inc. Handel-C Language Reference Manual. 2007.

[Agil 08] Agility Design Solution Inc. Software Product Description for DK Design
Suite Version 5.0. April 2008.

[Ahme 04] E. Ahmed and J. Rose. The Effect of LUT and Cluster Size on Deep-
Submicron FPGA Performance and Density. IEEE Transactions on Very
Large Scale Integration Systems, Vol. 12, No. 3, pp. 288–298, March 2004.

[Aken 05] V. C. Aken’Ova, G. Lemieux, and R. Saleh. An improved "soft" eFPGA de-
sign and implementation strategy. Custom Integrated Circuits Conference,
2005. Proceedings of the IEEE 2005, Vol. , No. , pp. 179–182, September
2005.

[ANSI 85] ANSI/IEEE, New York. IEEE Standard for Binary Floating-Point Arith-
metic. Tech. Rep., The Insittution of Electrical and Electronics Engineer-
ings, Inc, 1985. IEEE Std 754-1985.

[Beau 08] M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S. Hemmert. Ar-
chitectural Modifications to Enhance the Floating-Point Performance of
FPGAs. IEEE Transactions on Very Large Scale Integration Systems, Vol. 16,
No. 2, pp. 177–187, 2008.

[Beck 04] l. Beck. A Place-and-Route Tool for Heterogeneous FPGAs. Tech. Rep.,
Cornell University, 2004.

[Bela 02] P. Belanovic and M. Leeser. A Library of Parameterized Floating-Point
Modules and Their Use. In: Proceedings of Field Programmable Logic
(FPL), pp. 657–666, 2002.

[Betz 97] V. Betz and J. Rose. VPR: A New Packing, Placement and Routing Tool
for FPGA Research. In: Proceedings of Field Programmable Logic (FPL),
pp. 213–222, 1997.

[Betz 99] V. Betz, J. Rose, and A. Marquardt, Eds. Architecture and CAD for Deep-
Submicron FPGAs. Kluwer Academic Publishers, 1999.

164 BIBLIOGRAPHY

[Brig 05] A. Bright, R. Haring, M. Dombrowa, M. Ohmacht, D. Hoenicke, S. Singh,
J. Marcella, R. Lembach, S. Douskey, M. Ellavsky, C. Zoellin, and A. Gara.
Blue Gene/L compute chip: synthesis, timing, and physical design. IBM
Journal of Research and Development, Vol. 49, No. 2/3, pp. 277–287,
March/May 2005.

[Call 06] O. Callanan, D. Gregg, A. Nisbet, and M. Peardon. High Performance
Scientific Computing Using FPGAs with IEEE Floating Point and Loga-
rithmic Arithmetic for Lattice QCD. Proceedings of Field Programmable
Logic (FPL), Vol. , No. , pp. 1–6, August 2006.

[Chen 01] D. Chen, J. Cong, M. Ercegovac, and Z. Huang. Performance-Driven Map-
ping for CPLD Architectures. In: Proceedings of Field Programmable Gate
Array (FPGA), pp. 39–47, February 2001.

[Cher 96] D. Cherepacha and D. Lewis. DP-FPGA: An FPGA Architecture Optimized
for Datapaths. VLSI Design, Vol. 4, No. 4, pp. 329–343, 1996.

[Chon 09] Y. J. Chong and S. Parameswaran. Flexible Multi-Mode Embedded
Floating-Point Unit for Field Programmable Gate Arrays. In: Proceed-
ings of Field Programmable Gate Array (FPGA), pp. 171–180, ACM, New
York, NY, USA, February 2009.

[Comp 04] K. Compton and S. Hauck. Flexibility measurement of domain-specific re-
configurable hardware. In: Proceedings of Field Programmable Gate Array
(FPGA), pp. 155–161, 2004.

[Comp 07] K. Compton and S. Hauck. Automatic Design of Area-Efficient Config-
urable ASIC Cores. IEEE Transactions on Computers, Vol. 56, No. 5,
pp. 662–672, May 2007.

[Cope 08] B. Cope, P. Y. K. Cheung, and W. Luk. Using reconfigurable logic to op-
timise GPU memory accesses. In: Proceedings of the conference on De-
sign, automation and test in Europe, pp. 44–49, ACM, New York, NY, USA,
2008.

[Craw 08] C. H. Crawford, P. Henning, M. Kistler, and C. Wright. Accelerating com-
puting with the cell broadband engine processor. In: Proceedings of the
2008 conference on Computing frontiers, pp. 3–12, 2008.

[Cron 99] D. Cronquist, C. Fisher, M. Figueroa, P. Franklin, and C. Ebeling. Archi-
tecture design of reconfigurable pipelined datapaths. Advanced Research
in VLSI, 1999. Proceedings. 20th Anniversary Conference on, Vol. , No. ,
pp. 23–40, March 1999.

[Dido 02] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaria, and D. Poirier.
A flexible floating-point format for optimizing data-paths and operators
in FPGA based DSPs. In: Proceedings of Field Programmable Gate Array
(FPGA), pp. 50–55, 2002.

[Dong 03] J. Dongarra, P. Luszczek, and A. Petitet. The LINPACK Benchmark: past,
present and future. Concurrency and Computation: Practice and Experi-
ence, Vol. 15, No. 9, pp. 803–820, 2003.

BIBLIOGRAPHY 165

[Dong 08] J. J. Dongarra. Performance of Various Computers Using Standard Linear
Equations Software. 2008.

[Dou 05] Y. Dou, S. Vassiliadis, G. K. Kuzmanov, and G. N. Gaydadjiev. 64-bit
floating-point FPGA matrix multiplication. In: Proceedings of Field Pro-
grammable Gate Array (FPGA), pp. 86–95, 2005.

[Ebel 96] C. Ebeling, D. C. Cronquist, and P. Franklin. RaPiD - Reconfigurable
Pipelined Datapath. In: Proceedings of Field Programmable Logic (FPL),
pp. 126–135, 1996.

[Flac 05] B. Flachs, S. Asano, S. Dhong, P. Hotstee, G. Gervais, R. Kim, T. Le,
P. Liu, J. Leenstra, J. Liberty, B. Michael, H. Oh, S. Mueller, O. Takahashi,
A. Hatakeyama, Y. Watanabe, and N. Yano. A streaming processing unit
for a CELL processor. In: Digest of Technical Papers, Solid-State Circuits
Conference, pp. 134–135, 2005.

[Flet 82] J. Fletcher. An arithmetic checksum for serial transmissions. IEEE Trans-
actions on Communications, Vol. COM-30, No. 1, pp. 247–252, January
1982.

[Gold 00] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor.
PipeRench: a reconfigurable architecture and compiler. IEEE Transactions
on Computers, Vol. 33, No. 4, pp. 70–77, April 2000.

[Gold 91] D. Goldberg. What every computer scientist should know about floating-
point arithmetic. ACM Comput. Surv., Vol. 23, No. 1, pp. 5–48, 1991.

[Hauc 04] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimera Reconfigurable
functional unit. IEEE Transactions on Very Large Scale Integration Systems,
Vol. 12, No. 2, pp. 206–217, February 2004.

[Haus 98] J. Hauser. TestFloat Release 2a General Documentation.
http://www.jhauser.us/arithmeic/testfloat.txt, 1998.

[Ho 02a] C. Ho, M. Leong, P. Leong, J. Becker, and M. Glesner. Rapid Prototyping of
FPGA based Floating-point DSP Systems. In: Proceedings of Rapid System
Prototyping, pp. 19–24, 2002.

[Ho 02b] C. Ho, P. Leong, K. H. Tsoi, R. Ludewig, P. Zipf, A. Ortiz, and M. Glesner.
Fly - A Modifiable Hardware Compiler. In: Proceedings of Field Pro-
grammable Logic (FPL), pp. 381–390, LNCS 2438, Springer, 2002.

[Ho 03] C. Ho, K. Tsoi, H. Yeung, Y. Lam, K. Lee, P. Leong, R. Ludewig, P. Zipf,
A. Ortiz, and M. Glesner. Arbitrary function approximation in HDLs with
application to the N-body problem. In: Proceedings of Field Programmable
Technology (FPT), pp. 84–91, 2003.

[Hoar] R. R. Hoare, A. K. Jones, D. Kusic, J. Fazekas, J. Foster, S. Tung, and
M. McCloud. Rapid VLIW processor customization for signal processing
applications using combinational hardware functions. EURASIP J. Appl.
Signal Process., Vol. 2006, pp. 1110–8657.

166 BIBLIOGRAPHY

[Holl 07] M. Holland and S. Hauck. Automatic Creation of Domain-Specific Re-
configurable CPLD for SoC. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 26, No. 2, pp. 291–295, February
2007.

[Hsu 06] S. Hsu, S. Mathew, M. Anders, B. Zeydel, V. Oklobdzija, R. Krishnamurthy,
and S. Borkar. A 110 GOPS/W 16-bit Multiplier and Reconfigurable PLA
Loop in 90-nm CMOS. IEEE Journal of Solid State Circuits, pp. 256–264,
2006.

[Jaen 01] A. Jaenicke and W. Luk. Parameterised floating-point arithmetic on FP-
GAs. In: Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 897–900, 2001.

[Jami 05] P. Jamieson and J. Rose. A Verilog RTL synthesis tool for heterogeneous
FPGAs. In: Proceedings of Field Programmable Logic (FPL), pp. 305–310,
August 2005.

[Kund 04] P. D. Kundarewich. and J. Rose. Synthetic circuit generation using clus-
tering and iteration. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, Vol. 23, No. 6, pp. 869–887, June 2004.

[Kuon 07] I. Kuon and J. Rose. Measuring the Gap Between FPGAs and ASICs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 26, No. 2, pp. 203–215, Feb. 2007.

[Lang 08] M. Langhammer. Floating point datapath synthesis for FPGAs. In: Pro-
ceedings of Field Programmable Logic (FPL), pp. 355–360, September
2008.

[Leij 03] K. Leijten-Nowak and J. L. van Meerbergen. An FPGA architecture with
enhanced datapath functionality. In: Proceedings of Field Programmable
Gate Array (FPGA), pp. 195–204, 2003.

[Leon 07] A. S. Leon, K. W. Tam, J. L. Shin, D. Weisner, and F. Schumacher. A Power-
Efficient High-Throughput 32-Thread SPARC Processor. IEEE Journal of
Solid State Circuits, Vol. 42, No. 1, pp. 7–16, January 2007.

[Lusz 06] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F. Lucas,
R. Rabenseifner, and D. Takahashi. The HPC Challenge (HPCC) bench-
mark suite. In: SC ’06: Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, p. 213, ACM, New York, NY, USA, 2006.

[Luu 09] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W. M. Fang, and J. Rose.
VPR 5.0: FPGA cad and architecture exploration tools with single-driver
routing, heterogeneity and process scaling. In: Proceedings of Field Pro-
grammable Gate Array (FPGA), pp. 133–142, ACM, New York, NY, USA,
2009.

[Mars 99] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings. A
reconfigurable arithmetic array for multimedia applications. In: Proceed-
ings of Field Programmable Gate Array (FPGA), pp. 135–143, 1999.

BIBLIOGRAPHY 167

[Math 99] J. Mathews and K. Fink. Numerical Methods Using MATLAB, pp. 433–441.
Prentice Hall, 3rd Ed., 1999.

[Mei 03] B. Mei, S. Vernalde, D. Verkest, H. Man, and R. Lauwereins. ADRES: An
Architecture with Tightly Coupled VLIW Processor and Coarse-Grained
Reconfigurable Matrix. In: Proceedings of Field Programmable Logic (FPL),
pp. 61–70, 2003.

[Menc 06] O. Mencer. ASC: a stream compiler for computing with FPGAs. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
Vol. 25, No. 9, pp. 1603–1617, 2006.

[Mene 96] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryp-
tography, pp. 602–606. CRC Press, 1996.

[Mitr 98] S. K. Mitra. Digital Signal Processing A Computer-Based Approach Interna-
tional Editions 1998, pp. 339–416. McGraw-Hill, 1998.

[Morr 05] G. Morris and V. Prasanna. An FPGA-based floating-point Jacobi iterative
solver. Proceedings of Parallel Architectures,Algorithms and Networks, Vol. ,
No. , pp. 8–15, December 2005.

[Naka 88] T. Nakassis. Fletcher’s Error Detection Algorithm: How to implement it
efficiently and how to avoid the most common pitfalls. ACM Computer
Communication Review, Vol. 18, No. 5, pp. 86–94, October 1988.

[Nvid 09] Nvidia Corp. NVIDIA CUDA Architecture – Introduction and Overview. April
2009.

[Pada 03] K. Padalia, R. Fung, M. Bourgeault, A. Egier, and J. Rose. Automatic Tran-
sistor and Physical Design of FPGA Tiles From an Architecture Specifica-
tion. In: ACM International Conference on FPGAs, pp. 164–172, February
2003.

[Page 91] I. Page and W. Luk. Compiling Occam into FPGAs. In: FPGAs, pp. 271–
283, Abingdon EE&CS Books, 1991.

[Quin 05] B. Quinton and S. Wilton. Post-Silicon Debug Using Programmable Logic
Cores. In: Proceedings of Field Programmable Technology (FPT), pp. 241–
247, December 2005.

[Raba 02] J. Rabaey, A. Chandrakasan, and B. Nikolic. Digital Integrated Circuits A
Design Perspective. Prentice-Hall, 2002.

[Roes 02] E. Roesler and B. Nelson. Novel Optimizations for Hardware Floating-
Point Units in a Modern FPGA Architecture. In: Proceedings of Field Pro-
grammable Logic (FPL), pp. 637–646, 2002.

[Rudo 05] Rudolf Usselmann. Open Floating Point Unit: Overview. 2005.

[Saab 05] Saab Ericsson Space AB European Space Agency Contract Report.
Application-like Radiation Test of XTMR and FTMR Mitigation Techniques
for Xilinx Virtex-II FPGA. 2005.

168 BIBLIOGRAPHY

[Sara 07] S. Sarangi, S. Narayanasamy, B. Carneal, A. Tiwari, B. Calder, and J. Tor-
rellas. Patching Processor Design Errors with Programmable Hardware.
IEEE Micro, Vol. 27, No. 1, pp. 12–25, Janary/February 2007.

[Sent 92] E. Sentovich, K. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. Stephan, R. K. Brayton, and A. L. Sangiovanni-Vincentelli.
SIS: A System for Sequential Circuit Synthesis. Tech. Rep., University of
California, Berkeley, 1992.

[Sing 00] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh, and E. M. C.
Filho. MorphoSys: An Integrated Reconfigurable System for Data-Parallel
and Computation-Intensive Applications. IEEE Transactions on Computers,
Vol. 49, No. 5, pp. 465–481, 2000.

[Trip 07] J. Tripp, M. Gokhale, and K. Peterson. Trident: From High-Level Lan-
guage to Hardware Circuitry. IEEE Transactions on Computers, Vol. 40,
No. 3, pp. 28–37, March 2007.

[Tuan 06] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger. A 90nm low-
power FPGA for battery-powered applications. In: Proceedings of Field
Programmable Gate Array (FPGA), pp. 3–11, 2006.

[Unde 04] K. Underwood and K. Hemmert. Closing the Gap: CPU and FPGA Trends
in Sustainable Floating-Point BLAS Performance. In: Proceedings of Field
Custom Computing Machine (FCCM), pp. 219–228, 2004.

[Wagn 06] I. Wagner, V. Bertacco, and T. Austin. Shielding Against Design Flaws
with Field Repairable Control Logic. In: Design Automation Conference,
pp. 344–347, July 2006.

[Wait 05] C. Wait. IBM PowerPC 440 FPU with complex-arithmetic extensions. IBM
Journal of Research and Development, Vol. 49, No. 2/3, pp. 249–254,
March/May 2005.

[Wilt 05] S. Wilton, N. Kafafi, J. Wu, K. Bozman, V. Aken’Ova, and R. Saleh. Design
Considerations for Soft Embedded Programmable Logic Cores. IEEE Jour-
nal of Solid-State Circuits, Vol. 40, No. 2, pp. 485–497, February 2005.

[Wilt 07] S. Wilton, C. Ho, P. H. Leong, W. Luk, and B. Quinton. A Synthesizable
Datapath-Oriented Embedded FPGA Fabric. In: Proceedings of Field Pro-
grammable Gate Array (FPGA), pp. 33–41, February 2007.

[Xili 04] Xilinx Inc. Creating RPMs Using 6.2i Floorplanner. Applications Note
XAPP422, 2004.

[Xili 05] Xilinx Inc. Floating-Point Operator v3.0. Product Specification, 2005.

[Xili 07] Xilinx Inc. MicroBlaze Processor Reference Guide. 2007.

[Xili 08a] Xilinx Inc. PowerPC 405 Processor Block Reference Guide. 2008.

[Xili 08b] Xilinx Inc. Web Power Tool Quick Start Guide. 2008.

BIBLIOGRAPHY 169

[Xili 99] Xilinx Inc. XC4000XLA FPGAs Description. 1999.

[Yan 06] A. Yan and S. Wilton. Product-Term Based Synthesizable Embedded Pro-
grammable Logic Core. IEEE Transactions on Very Large Scale Integration
Systems, Vol. 14, No. 5, pp. 474–488, 2006.

[Yang 91] S. Yang. Logic Synthesis and Optimization Benchmarks User Guide Ver-
sion 3.0. 1991.

[Ye 03] A. Ye, J. Rose, and L. David. Architecture of datapath-oriented coarse-
grain logic and routing for FPGAs. Custom Integrated Circuits Conference,
2003. Proceedings of the IEEE 2003, Vol. , No. , pp. 61–64, September
2003.

[Ye 06] A. Ye and J. Rose. Using Bus-Based Connections to Improve Field-
Programmable Gate-Array Density for Implementing Datapath Circuits.
IEEE Transactions on Very Large Scale Integration Systems, Vol. 14, No. 5,
pp. 462–473, 2006.

[Yui 02] C. Yui, G. Swift, and C. Carmichael. Single Event Upset Susceptibility
Testing of the Xilinx Virtex II FPGA. In: Military and Aerospace Applica-
tions of Programmable Logic Conference (MAPLD), 2002.

[Zhan 05] G. Zhang, P. Leong, C. Ho, K. Tsoi, C. Cheung, D.-U. Lee, R. Cheung,
and W. Luk. Reconfigurable Acceleration for Monte Carlo Based Finan-
cial Simulation. In: Proceedings of Field Programmable Technology (FPT),
pp. 215–222, 2005.

[Zhao 06] W. Zhao and Y. Cao. New Generation of Predictive Technology Model for
Sub-45 nm Early Design Exploration. Electron Devices, IEEE Transactions
on, Vol. 53, No. 11, pp. 2816–2823, November 2006.

[Zhuo 04] L. Zhuo and V. K. Prasanna. Scalable and Modular Algorithms for
Floating-Point Matrix Multiplication on FPGAs. Proceedings of Parallel
and Distributed Processing, Vol. 01, pp. 92–101, 2004.

	Abstract
	Acknowledgements
	Dedication
	Table of Contents
	List of Tables
	List of Figures
	List of Publications
	Introduction
	Background and Related Work
	Introduction
	FPGA Architecture
	FPGA Design Tools
	Floating Point Number System
	Overview
	Addition and Subtraction
	Multiplication

	FPGA-based Floating Point Units
	Floating Point Applications
	Benchmark Circuits
	Digital Sine-Cosine Generator (dscg)
	Ordinary Differential Equation (ode)
	Matrix Multiplication (mm3)
	FIR Filter (fir4)
	Butterfly Circuit (bfly)
	Brace, Gatarek and Musiela (bgm)

	Terminology
	Summary

	Virtual Embedded Block
	Introduction
	Overview
	VEB Model
	VEB generation tool

	Vendor Specific Design Flow
	VEB Parameters Estimation
	Integration into Xilinx Tools
	Integration into Altera Tools

	Results
	Verification of the VEB Design Flow
	Embedded Floating Point Unit
	Exploration of Technology Trends

	Discussion
	Summary

	Synthesisable Datapath FPGA Fabric
	Introduction
	Overview and Architectural Requirements
	Architecture
	Example Mapping
	Parameter Optimisation
	Results
	Benchmark Circuits
	Area Results - Optimised Parameters
	Area Results - Derived Parameters
	Path Delay Results
	Delay and Power Results - Derived Parameters
	Proof-of-Concept Layout

	Comparison to Previous Work
	Alternative Debugging Architectures
	Fine-Grained Synthesisable Fabric
	Datapath-Oriented FPGAs
	Coarse-Grained Fabrics

	Summary

	Floating Point FPGA: Architecture and Modelling
	Introduction
	FPFPGA Architecture
	Requirements
	Architecture

	Example Mapping
	Modelling
	Overview
	Power Modelling

	Results
	Comparison with Previous Work
	Summary

	CAD Tools for Floating Point FPGA
	Introduction
	Requirements
	Technology mapper
	Overview
	Algorithm
	Bitstream Generator
	Example

	Integration
	Trident
	The fly compiler

	Results
	Summary

	Conclusion
	Summary of Achievements
	Future Work

	Bibliography

