
CUSTOMISABLE FPGA PLATFORM FOR ACCELERATING

FLOATING POINT COMPUTATIONS

by

CHUN HOK HO

(cho@doc.ic.ac.uk)

A report submitted in fulfillment of requirements for the MPhil to PhD transfer examination.

Custom Computing Group

Department of Computing

Imperial College London

January, 2007

Abstract

Floating point computations have been one of the demanding calculations among diverse

applications. While FPGA technology has been widely adopted to speed up computationally

intensive applications, the capability of running floating point application on an FPGA is

limited due to the size of an FPGA and the complexity of a floating point unit.

This research is focused on a reconfigurable device, which is optimised for floating

point computation. This reconfigurable device employs significantly amount of heteroge-

neous blocks on fine-grained island-style FPGA fabric. The architecture of heterogeneous

block employs parameterised design flow to allow architectural exploration. The fine-grained

island-style FPGA fabric employs existing commercial FPGA architecture.

The issues and challenges associated with the architecture, modelling and design flow

have been discussed in this report. The initial model of such an FPGA has been developed

and preliminary results support that an FPGA specialised for floating point computations

can yield better speed and density than a classic commercial FPGA device. In addition, this

report presents the future plan and an outline of the thesis.

List of Publications

The following publications have been written during the course of this work:

• C.H. Ho, C.Y. Yu, P.H.W. Leong, W. Luk, S.J.E. Wilton, “Domain-Specific Hybrid

FPGA: Architecture and Floating Point Applications”, submitted to Proceedings of

Field-Programmable Custom Computing Machines, 2007.

• C.H. Ho, P.H.W. Leong, W. Luk, S.J.E. Wilton, S. Lopez-Buedo, “Evaluating Em-

bedded Elements in Reconfigurable Devices Using Virtual Embedded Blocks”, to be

submitted to IEEE Transactions on Very Large Scale Integration Systems.

• S.J.E. Wilton, C.H. Ho, P.H.W. Leong, W. Luk and B. Quinton, “A Synthesizable

Datapath-Oriented Embedded FPGA Fabric”, to appear in Proceedings of Fifteenth

ACM/SIGDA International Symposium on FPGAs.

• G.L.Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C. Cheung, D. Lee and W. Luk,

“Reconfigurable Monte Carlo Simulation for Financial Modelling”, submitted to IEEE

Transactions on Computers.

• C.H. Ho, K.F.C. Yiu, J. Huo and W. Luk, “Reconfigurable acceleration of robust

frequency-domain echo cancellation”, in Proceedings of Engineering of Reconfigurable

Systems and Algorithms, pp. 184–190, 2006.

• C.H. Ho, P.H.W. Leong, W. Luk, S.J.E. Wilton, S. Lopez-Buedo, “Virtual Embedded

Blocks: A Methodology for Evaluating Embedded Elements in FPGAs”, in Proceedings

of Field-Programmable Custom Computing Machines, pp. 35–44, 2006.

i

Contents

1 Introduction 1

2 Related Work 5

2.1 FPGA architecture . 5

2.2 FPGA-based floating point units . 8

2.3 Floating point applications . 12

2.4 FPGA design tools . 13

2.5 Benchmark Circuits . 14

2.5.1 Digital Sine-Cosine Generator (dscg) 15

2.5.2 Ordinary Differential Equation (ode) 16

2.5.3 Matrix Multiplication (mm3) . 16

2.5.4 FIR Filter (fir4) . 16

2.5.5 Butterfly Circuit (bfly) . 17

2.5.6 Brace, Ga̧tarek and Musiela (bgm) 17

2.6 Summary . 18

3 Virtual Embedded Block 19

3.1 Methodology: Generic Aspects . 20

3.2 Methodology: Vendor Specific Aspects . 22

3.2.1 VEB Delay and Area model . 23

3.2.2 Integration of VEB into toolchain . 24

3.3 Results . 25

ii

3.3.1 Verification of the VEB Approach . 25

3.3.2 Faster Embedded Multipliers . 26

3.3.3 Embedded Floating-Point Unit . 27

3.3.4 Impact of Embedded Block Performance 28

3.4 Summary . 30

4 Synthesisable Datapath FPGA Fabric 33

4.1 Architecture . 34

4.1.1 Requirements of a synthesisable architecture 34

4.1.2 Our architecture . 35

4.2 Example Mapping . 38

4.3 Parameter optimisation . 39

4.4 Mapping results . 43

4.4.1 Benchmark circuits . 43

4.4.2 Optimised parameters . 44

4.4.3 Derived parameters . 46

4.5 Proof-of-concept layout . 48

4.6 Comparison to previous work . 49

4.6.1 Fine-grained synthesisable fabric . 49

4.6.2 Datapath-oriented FPGAs . 50

4.6.3 Coarse-grained fabrics . 51

4.7 Summary . 51

5 Hybrid Floating Point FPGA 53

5.1 Introduction . 53

5.2 Generic domain-specific hybrid FPGA . 54

5.3 Floating point hybrid FPGA architecture . 55

5.3.1 Requirements . 55

5.3.2 Architecture . 57

iii

5.3.3 Design flow . 60

5.4 Modelling of a hybrid FPGA . 62

5.4.1 Soft-core embedded floating point units 62

5.4.2 Synthesisable coarse-grained units . 62

5.4.3 Integration with fine-grained units . 64

5.5 Results . 65

5.5.1 Example mapping . 66

5.5.2 Comparison with existing FPGA devices 67

5.5.3 Comparison with previous work . 70

5.6 Summary . 71

6 Conclusion and Future Work 73

iv

Chapter 1

Introduction

Improvements in floating point performance have led to major advances in applications

as diverse as weather forecasting, problem modelling, financial engineering, molecular dy-

namics and drug discovery. Although supercomputers based on microprocessor clusters are

commonly used for these applications, it appears that their efficiency in terms of sustained

performance and power consumption can be significantly improved through increased fined-

grained parallelism and better memory utilisation. A good example of a processor optimised

for power consumption and performance is the one used in IBM Blue Gene/L (BG/L) ma-

chine [1], which is currently the fastest supercomputer [2]. Yet I note that its floating point

unit (FPU), which contributes more than 95% computation time in benchmark programs like

Linpack as well as many other floating point applications like Monte Carlo simulation and

N-body problem, constitutes only 10% of the total BG/L compute chip area. The other 90%

serves to provide the FPUs with data and perform tasks such as caching, instruction fetching,

memory decoding, speculative execution, register files, etc. In addition, the high power con-

sumption of general-purpose processors prohibits the use of floating point arithmetic in low

cost embedded systems. I believe that using spatially-parallel hardware oriented techniques

with a cluster of FPUs often has advantages in terms of performance, power consumption

and area over the traditional general-purpose processor approach.

It is possible to build a dedicated circuit for a specific floating point application using

1

application specific integrated circuit (ASIC) technology, which offers the potential to achieve

the highest performance with the least power consumption and area. However, the associated

fabrication cost and design time preclude their use in low to medium volume applications, and

ASIC designs are not flexible since the circuits cannot be changed once they are fabricated.

Another way of implementing floating point applications is to use field programmable gate

array (FPGA) technology. An FPGA contains an array of logic gates and storage elements,

in which the functionality and interconnection can be configured by downloading a bitstream

into its configuration memory. Given the flexible FPGA architecture, a tailor-made datapath

and an FPU cluster, a floating point application is likely to have faster execution speed

and lower power consumption than general-purpose processors. FPGA technology has been

successfully applied to accelerate a large number of diverse applications including signal

processing, communications, networking and robotics. The application of FPGA technology

to computational problems is also known as reconfigurable computing.

In recent years there has been a significant increase in the size of FPGAs. Current

FPGA technology allows arbitrary precision floating point arithmetic while retaining hard-

ware speed. Recent work on dot product, matrix-vector and matrix multiplication [3] in-

dicates that FPGAs will soon be able to significantly outperform modern microprocessors

because of advantages in memory bandwidth and in floating point performance. Another

study [4] shows that an FPGA-based FPU implementation can achieve 15.6 GFLOPS (billion

floating point operations per second) with 1.6 MB local memory and a 400 MB/s external

memory bandwidth. My previous research [7] indicated that using different arbitrary size

of floating point operation in a single design can reduce the circuit area while the accuracy

can remain the same. In addition, my recent research [8] shows that an FPGA-based imple-

mentation of BGM financial model running at 50MHz is over 25 times faster than software

computations on a 1.5 GHz Intel Pentium 4 machine. However, as the current FPGA ar-

chitecture only embeds blocks for fixed point operations such as fast carry-chains and block

multipliers, it is expected that the computation speed can be made even faster and the power

consumption can be lower if more primitive blocks optimised for floating point operations

2

are embedded in FPGAs.

Having better floating point performance in terms of speed and power consumption is

beneficial to several area of applications. For example, in Monte Carlo simulation models,

increasing performance of floating point operations will allow more paths to be simulated,

and therefore the result will be more accurate. Financial applications which require real-time

response can meet stringent timing requirement with less hardware, and therefore reduce the

associated cost. Graphics applications can process more transformations to produce more

realistic effects. Reduction in power consumption of floating point operations allows longer

battery life for embedded systems, significantly improving their effectiveness.

The research focuses on developing methods and tools for new FPGA architectures which

improve the execution speed of floating point operations while retaining their programma-

bility. The research will study current FPGA architectures, demanding floating point appli-

cations, and propose novel FPGA architectures that optimise floating point arithmetic. The

customisable FPGA platform contains libraries and tool to allow user-defined customisations

in FPGAs which have special facilities to support the implementation of floating point oper-

ations. Different floating point applications will be used to measure the performance of the

customisable FPGA platform. The three main objectives of the research are:

1. To investigate architectural innovations to support floating point operations in FPGA,

for instance by studying the function, the granularity and connectivity of possible

hardware primitives for floating point arithmetic.

2. To explore advanced design tools for the customisable FPGA platform, to facilitate

experiments with different customisations.

3. To investigate applications that can benefit from the proposed research and to quantify

such benefit based on current and future technology.

To approach the objectives, we require (1) a generic FPGA architecture which represent

different family of FPGA with arbitrary reconfigurable block, (2) a generic FPGA model

which can produce accurate timing and area results according to (i) FPGA architectural

3

parameters and (ii) user-defined circuits implemented on this architecture, (3) an automatic

synthesis tool which can produce a bitstream from high level description of a circuit and (4)

representative floating point applications to evaluate an FPGA architecture.

Several work has been done to address the above-mentioned requirements. In particular,

A comprehensive literature review and related work are presented in Chapter 2. This chap-

ter also describes some of the benchmarks we used to evaluate FPGA architectures, which

include floating point unit and some floating point circuits. The circuit can be as small

as a simple dot-vector product or as large as an interest rate model derivatives. Chapter 3

demonstrates a methodology to model a commercial FPGA with arbitrary embedded blocks.

This addresses the requirement (2) in some degree and it can provide a rapid evaluation on

existing FPGA architecture. Chapter 4 propose a parametrised coarse-grained FPGA archi-

tecture and a synthesisable design flow which can model this architecture. The parametrised

architecture allows us to search for a near-optimum floating point FPGA design in the fu-

ture. By combining the methodology described in both chapter, an initial design of FPGA

which is optimised for floating point computations is illustrated in Chapter 5. The future

work, thesis outline, as well as the conclusion are made in Chapter 6.

4

Chapter 2

Related Work

A survey of several related topics has been conducted. Published work which includes floating

point units, FPGA fabric architecture, FPGA design tools has been reviewed and summarised

as below. We also summarised the benchmark circuits used in subsequent chapters.

2.1 FPGA architecture

An FPGA is made up of a reconfigurable fabric. The fabric itself consists of arrays of fine-

grained or coarse-grained units. A fine-grained unit usually implements a single function

and has a single bit output. The most common fine-grained unit is a K-input lookup table

(LUT), where K typically ranges from 4 to 6. The LUT can implement any boolean equation

of K-inputs. This type of fabric is called a LUT-based fabric. Several LUT-based cells can

be joined in a hardwired manner to make a cluster. This results in little loss in flexibility

but can reduce area and routing resources within the fabric [57].

Fine-grained units can also be implemented using a product-term block consisting of

an AND and OR plane. The area of a product-term block is usually larger than that of

a LUT-based fabric, as it usually has larger fan-in along with small amounts of routing

resources to connect the planes. We consider the product-term unit to be a fine-grained

unit, because it usually has a small number of output bits. Product-term blocks appear in

5

system-on-chip [55] as well as commercial CPLD devices.

While a fine-grained unit is flexible and can usually implement any boolean function,

the area, delay and power overhead of an array of fine-grained units that implement a given

function are often significantly larger than an appropriate coarse-grained unit. Commercial

FPGAs, which employ fine-grained fabric as the major component, include special features

in the fabric dedicated to operations which are common in digital design. A notable example

is the dedicated carry chain on both Xilinx and Altera devices. The reason for adding such

feature is obvious - integer addition and subtraction are common operations for all digital

circuits. Multiplexers are another example, as they are inferred frequently in a digital design.

A coarse-grained unit is usually less flexible and typically much larger than a fine-grained

one, but is often more efficient for implementing specific functions. The coarse-grained unit

is usually programmable to some degree, combining several functions such as those in an

arithmetic logic unit (ALU). Outputs are often multibit. They can be parameterised in terms

of features such as bus-width and functionality. As an example, the ADRES architecture [58]

assumes that the wordlength and the functionality of a coarse-grained unit is the same as

the targeted processor.

Heterogeneous functional blocks are found on commercial FPGA devices. For example, a

Virtex II device has embedded fixed-function 18-bit multipliers and a Xilinx Virtex 4 device

has embedded DSP units with 18-bit multipliers and 48-bit accumulators. The flexibility of

these blocks are limited and it is less common to build a digital system solely using these

blocks. When the blocks are not used, they consume die area and contribute to increased

delay without adding to functionality.

Numerous research projects on FPGA architecture to support domain-specific applica-

tions have been conducted. Leijten-Nowak and van Meerbergen [14] proposed mixed-level

granularity logic blocks and compared their benefits with a standard island-style FPGA us-

ing the Versatile Place and Route tool (VPR) [15]. Ye, Rose and Lewis [67] studied the

effects of coarse grained logic cells and routing resources for datapath circuits, also using

VPR.

6

Kuan [69] has reported the effectiveness of embedded elements in current FPGA devices

by comparing with the equivalent ASIC circuit under 90nm technology process. Akan’Ova et. al.[70]

has demonstrated a standard-cell-based eFPGA with improving performance using a struc-

tural design and layout approach. Compton and Hauck [71] have suggested a flexibility

measurement on domain-specific reconfigurable architecture. Beck revised VPR to explore

the effects of introducing hard macros [68].

Several previous studies have considered datapath-oriented FPGAs [33, 36, 39, 47, 48]. In

these architectures, configuration bits are shared among multiple lookup-tables and multiple

routing switches.

Coarse-grained architectures, in which lookup-tables are replaced by ALUs, have also

been described in [34, 35, 40, 44]. Of these, the RaPiD architecture [44] was specifically

designed for use in an SoC. RaPid contains a linear array of dedicated functional units

connected using dedicated buses. Control logic is implemented using a separate module that

provides control signals to the functional units.

RaPiD is intended to support fairly large applications such as image and signal processing,

and may be best implemented as a hard programmable logic core. It would be possible to

“scale down” RaPiD and use it as a synthesisable core. However, like the datapath FPGAs

described in the previous section, the unprogrammed RaPiD fabric contains combinational

loops. Our architecture eliminates these using a directional routing network.

While many studies can satisfy certain domain-specific applications, they fail to recognise

the applications which demand intensive floating point computations. Our project aims at

inventing methodology and architecture to produce a customisable FPGA optimised for

floating point computations.

Yet, there are a few research projects dedicated to FPGA architecture for floating point

computations. Beauchamp et. al. augmented VPR to assess the impact of embedding

floating-point units in FPGAs [53]. The study of embedded heterogeneous blocks for the

acceleration of floating point computations has been reported by Roseler and Nelson [52].

Both studies conclude that employing heterogeneous blocks in designing FPU on FPGAs

7

achieves area saving and increased clock rate over a fine-grained approach.

However, the work in [52] does not take into the account the architectural modification of

the FPGA device and solely adopts existing heterogeneous blocks in FPGA device to design

floating point units. Our research considers any potential embedded elements, including

embedded floating point unit, in the design of fabric. It is described in Chapter 5.

While [53] evaluate the results by employing a modified VPR flow, where floating point

unit model is added to the VPR framework, their work inherits the limitation given by VPR.

For instance, as direct comparison to commercial FPGA device cannot be made, the results

may not reveal the actual situation. In addition, since their work does not consider any

routing resource optimisation as well as bus-based logic optimisation, their reported results

may tend to be too conservative. This project propose a model which is comparable to

existing FPGA device and that could produce more realistic results. This methodology is

discussed in Chapter 3.

2.2 FPGA-based floating point units

A. Jaenicke and W.Luk [5] have implemented parameterised floating point adder and multi-

plier on FPGAs. The design is based on Handel-C language and the data format is variance

of IEEE standard. It is reported that the floating point adder can perform 28 MFLOPS

(million floating operations per second) for arbitrary sizes of fraction and exponent. A 2D

Fast Hartley Transform (FHT) processor has been developed by using this FPU as basic

building blocks and it can perform a 1K-point transform in 10 µs.

P. Belanovic̀ et al [6] implemented a parameterised floating point library for use with

reconfigurable hardware. It is based on the IEEE 754 floating point format standard. The

library includes addition, subtraction, multiplication and conversion between fixed point

and floating point numbers. All of these modules are specified in VHDL and implemented

on the Wildstar reconfigurable computing engine. They are fully-pipelined and cascadable

to form pipelines of floating point operations. This library was used to develop a hybrid

implementation of the K-means clustering algorithm applied to multi-spectral images.

8

exception

adder/multiplier

post-normalisation

pre-normalisation

A B
Rounding

mode

Result Ex Flags

add/sub

Figure 2.1: Simplified datapath of floating point adder/multiplier

Dido et.al. [76] proposed a flexible floating point format which is optimised for video

signal processing application. The format employs moderate bitwidth but it can maintain

sufficient output accuracy. This can deliver better performance and consume less area with

acceptable trade-off on accuracy.

A set of parameterisable floating point operators and floating point benchmark circuits

have been developed in HDL model. The floating point operators are fully-compliant with

IEEE754 [25] standard and support 4 rounding modes, subnormal numbers and exceptions.

In addition, they are fully-pipelined and arbitrary size of exponent and fraction are allowed

by modifying the model slightly. To support parameterised floating point operators, a HDL

generator is developed using Perl language which can generate the associated logic for a

specific size of exponent and significant on-the-fly.

Floating Point Adder – The floating point adder is based on a heavily modified open-

source floating point unit [24]. It consists of several blocks, namely, a pre-normalisation

block, an addition block, a post-normalisation blocks and an exception handling block. A

simplified architecture of the floating point adder and multiplier is shown in figure 2.1. In

the pre-normalisation stage, the inputs are registered and the exponents are compared. The

inputs are swapped if it is necessary. The fractions are shifted to right accordingly and

operation mode which indicates if the effective operation (either addition or subtraction) is

evaluated. The most expensive circuit for the pre-normalisation stage is the barrel shifter.

Special number from the input such as subnormal number, infinity and not a number

9

(NaN) are handled in the exception handling block. Corresponding flags, such as subnormal

flag, zero flag, infinity flag, NaN flag are set according to the combination of the input. This

circuit is simple and only comparators is required. The addition block takes the output from

the pre-normalisation block, in which the data has been properly aligned and the operation

mode is well defined. The addition block adds or subtracts the numbers according to the

operation mode. In modelling the addition block, instead of using + operator in HDL code,

a dedicated carry chain is explicitly specified. Therefore the VPR tools can associated the

adder with dedicated carry chain instead of a traditional full adder block.

The post-normalisation block is the most complicated circuit in the floating point adder.

After the intermediate result is generated by addition block, a priority encoder inside the

post-normalisation block takes the result as an input and counts the number of leading zero

of the result. The exponent is then adjusted and the fraction is shifted to left depending on

the number of leading zero. Different rounding scheme is enforced according to the input to

produce final result. Exception flags like inexact number, overflow, underflow is generated

based on the final result. All the outputs are registered so the result and the corresponding

exception flags are given in next clock cycle. This block contains two expensive circuits,

namely barrel shifters and a priority encoder.

Floating Point Multiplier – Same as the floating point adder, the floating point multi-

plier is based on the same open-source floating point unit, and it has been heavily modified.

It consists of several blocks, namely, a pre-normalisation block, a multiplication block, a

post-normalisation block and an exception handling block. In the pre-normalisation stage,

the intermediate exponent is determined by adding exponents from the inputs. Hidden bits

of the fractions are recovered based on the exponent values. This blocks does not have

expensive circuits and most of them are comparators and adders.

The exception block of floating point multiplier is the same as the one in floating point

adder. It detects any special input values. The multiplication block takes the output from

the pre-normalisation block, in which the hidden bits in fraction has been recovered properly

and an integer multiplication is computed by a multiplier. The results are then populated

10

to post-normalisation block. The multiplier circuit consumes significant amount of resource

in this block.

The post-normalisation takes the intermediate product from the multiplication block as

input. A priority encoder in the post-normalisation block counts the number leading zero

in the intermediate product. Similar to the post-normalisation block in the floating point

adder, the exponent is then adjusted and the fraction is shift to the left based on the number

of leading zero. Different rounding mode is enforced according to the input to produce final

result. Exception flags like inexact number, overflow, underflow is generated based on the

final result. And all the outputs are registered and the final result and the associated flags are

given in next clock cycle. This block contains two expensive blocks, namely barrel shifters

and a priority encoder.

Verification – To verify the correctness of the floating point operators so that they

comfort to the IEEE 754 standard, an open-source program called TestFloat-2a [26] is em-

ployed. By slightly modifying the output options in TestFloat-2a program, it can create a

large number of test cases, which make up of simple pattern tests intermixed with weighted

random inputs for the floating point operators. The “level 1” test in TestFloat-2a covers all 4

rounding modes, and all boundary cases of given arithmetic, including underflows, overflows,

invalid operations, subnormal inputs, zeros (positive and negative), infinities (positive and

negative), and NaNs. Each test case contains an operation, a rounding mode, floating point

numbers to be evaluated, an expected result and expected exception flags. The expected

results and the expected exception flags are computed purely in software and does not rely

on machine-specific floating point implementation. A corresponding testbench written in

Verilog is created which reads the test cases generated by TestFloat-2a, invokes the corre-

sponding floating point operator to compute the result, and compares the result and the

exception flags with the expected output. The test case is created with switch “level 1” in

the initial settings of TestFloat-2a. Table 2.1 shows the number of test vectors has been

created for specific floating point operation. All test cases assume double precision floating

point format. The testbench is run in ModelSim 5.7d and no error are found.

11

Floating Point Operation Number of tests

Floating Point Addition/Subtraction 371712

Floating Point Multiplication 371712

Table 2.1: Number of tests generated by TestFloat-2a

Operator Slices Embedded Multiplier Latency Frequency (MHz)

fpadd2 1777 0 5 134

fpmul2 2150 9 5 76

Table 2.2: FPGA implementation results for Floating Point operators

Implementation – In order to compare with the floating point core using current com-

mercial FPGA with the one using customisable FPGA, the floating point operators circuits

have been implemented on FPGA device. The reference FPGA platform is XC2V6000 and

the speed grade is -5. All the design is synthesis using ”Synplify Pro 8.0”. The designs are

placed and routed and the area and the timing are obtained by vendor CAD packages ISE

7.1. Table 2.2 presents the area and frequency of the double precision floating point adder

and multiplier.

2.3 Floating point applications

Many floating point systems have been implemented on FPGA devices. In [73], an N-body

solver is developed using Virtex-E device. The computations are based on parameterised

floating point library and can achieve a peak speed of 3GFLOPS. In [74], three of the

basic linear algebra subroutine (BLAS) functions are estimated and it suggests that FPGAs

platform outperform modern general-purpose processor on double precision floating point

operations. It also mentions that unlike CPUs, FPGAs are usually limited by peak FLOPS

rather than by memory bandwidth so improving the floating point computation performance

12

of an FPGA can obtain similar gain on overall systems.

Zhang et. al [77] employ floating point arithmetic to compute the Brace, Ga̧tarek and

Musiela interest rate model for pricing derivatives. While running at relatively low fre-

quency (50MHz), the performance is 25 times faster than software running on a 1.5GHz

Intel Pentium 4 machine.

O. Callanan et. al [78] demonstrate a FPGA based lattice QCD processors using IEEE

double precision floating point format and compared with corresponding ASIC based so-

lutions and PC cluster-based solutions. The FPGAs version, which is implemented on a

Virtex II FPGA device, can achieve 1.2GFLOPS when performing Dirac operation and de-

liver 0.94GFLOPS on conjugate gradient solver. The performance of Dirac operation two

times better than purely software implementation.

Zhuo and Prasanna [79] propose an FPGA-based architecture for floating point matrix

multiplication. It employs a linear array architecture and effectively utilises the hardware re-

sources on the entire FPGA device while reduces the routing complexity. Their work achieve

comparable floating-point computation performance and can deliver up to 26.6GFLOPS and

12.3GFLOPS for single precision and double precision floating point format respectively.

Morris and Prasanna [80] report an FPGA-based floating point Jacobi iterative solver.

The design employs a deeply pipelined, highly parallelised IEEE double precision floating

point operator. The solver is implemented on a Virtex II Pro device running at 77MHz.

Depending on the nature of input data, it can achieve up to 36.8 times speedup when

compared with uni processor implementation.

2.4 FPGA design tools

Different strategies have been proposed to model FPGA architectures. The VPR computer

aided design (CAD) tool [54], developed by Betz and Rose, supports parameterised island-

style FPGA architectures. It can place and route designs and can be used to estimate

performance. However, the model of the reconfigurable fabric is obsolete and most commonly

available features such as carry chains, embedded memories, embedded multipliers cannot

13

be modelled. In addition, there is no commercial quality synthesis tool to support the VPR

tool. This prohibit the use of VPR as it is difficult to implement relatively large circuit.

Yan and Wilton employ a synthesisable flow to model reconfigurable fabric [55]. They

describe the architectures of the fabric using hardware description language (HDL) and

synthesis it with standard cell library design flow. The area and timing information can be

obtained directly from the synthesis tool. The model also facilitates rapid evaluation because

of the mature ASIC standard cell library design flow. However, it is usually not the most

optimum ASIC implementation because of the limitation of the standard cell library design

flow. A full-custom ASIC design flow can usually implement the same model with less area

and shorter delay.

In terms of high level synthesis on an FPGA device, several schemes such as ASC [63],

Handel-C [81] and fly [11] are proposed. ASC, also known as a stream compiler, provides

a software-like programming interface to hardware design while at the same time keeping

the performance of manually-design circuits. It allows existing C/C++ code be seamlessly

transformed to ASC code to increase productivity and generate a large selection of imple-

mentations. The user can choose the most suitable design from them.

Handel-C is a language that is similar to ANSI-C but dedicated to hardware design. It

allows parallel execution constructs and offers a software-influenced hardware design method-

ology. It can produce a register transfer level netlist based on a code written in C language.

Fly compiler adopts similar semantic to Handel-C. However, the core is simple and

lightweight in which new constructs can be easily integrated into the compiler. This facili-

tates high level synthesis research and this project employs fly compiler to produce different

experiments efficiently. Furthermore, it is possible to modify the fly compiler such that it

can support the proposed FPGA architecture and this is briefly illustrated in Chapter 5.

2.5 Benchmark Circuits

As there are no existing standard benchmark circuits for floating point applications, a set of

benchmark circuit is implemented using fly [64] compiler or using HDL. Significant amount

14

of time in developing the benchmark circuits are reduced as fly compiler can generate a

circuit which contains a datapath and associated control signals from a software description.

In addition, all the floating point application benchmark circuits assume double preci-

sion floating point arithmetic and employ round-to-nearest-even rounding mode, while the

exception signals from the floating point operator are ignored in the circuits. By describing

the application using Perl-like description and simulate it in Perl environment, fly compiler

can speed up the implementation time of the benchmark applications. Four application cir-

cuits have been generated using fly compiler framework, which include a digital sine cosine

generator (dscg), an ordinary differential equation solver (ode), a 3-by-3 matrix multipli-

cation (mm3), a four-tap finite impulse response filter (fir4), a butterfly circuit for fast

Fourier transform (bfly) and a financial derivatives modelling circuit using Brace, Ga̧tarek

and Musiela framework(bgm) [22] . These benchmark applications contain different number

of floating point operators the inter-connection between those floating point operators are

different. The benchmark applications further assume the input data comes from an off-chip

memory.

2.5.1 Digital Sine-Cosine Generator (dscg)

Digital sine-cosine generator [20] has a number of applications, such as the computation of

discrete Fourier transform and in certain digital communication systems, such as in future

Hiperlan systems for high performance wireless indoor communication. Let s1n and s2n

denote the two outputs of a digital sine-cosine generator, the outputs at the next sample can

be computed using the following formula:







s1n+1

s2n+1





 =







cos(θ) cos(θ) + 1

cos(θ) − 1 cos(θ)













s1n

s2n





 (2.1)

15

2.5.2 Ordinary Differential Equation (ode)

Many scientific problems involve the solution of ordinary differential equations (ODEs). An

ODE solver (ode) is implemented as part of the floating point benchmarks. The benchmark

circuit solves the ODE [21]:

dy

dt
=

(t − y)

2
over t ∈ [0, 3] with y(0) = 1 (2.2)

Euler method was used and y was approximated by

yk+1 = yk + h
(tk − yk)

2
and tk+1 = tk + h

where h is the step size, the smaller value of h, the more accurate of the result.

The ordinary equation solver can take the step size h as the parameter and return the

value of y.

2.5.3 Matrix Multiplication (mm3)

Matrix multiplication is used frequently in different domain. Hence a 3x3 matrix multi-

plication application benchmark circuit is developed. The core of the circuit implements

the operation required to evaluated an element of the resulting matrix, which is a vector

dot-product. Extra logic is added to control the dataflow of the circuit.

2.5.4 FIR Filter (fir4)

Digital filter is one of the most common applications which requires floating point arithmetic

for high accuracy and precision, we have implemented a 4-tap finite impulse response filter,

which is characterised by the following equation:

y4 =
4

∑

j=0

kjx4−j (2.3)

where xi is the input of the filter, ki is the filter window and yi is the output. The

datapath of the filter is shown in figure 2.2.

16

D D D

x k1 x k2x k0 x k3

+ ++

X

Y

Figure 2.2: Four-tap FIR filter

Re {x}

Im {x}

Im {w}

Re {w}

X

X

X

X

–

+ +

+

Re {y}

Im {y}

Re {z}

Im {z}

Figure 2.3: One butterfly stage in FFT

2.5.5 Butterfly Circuit (bfly)

The fast Fourier transform (FFT) is another important signal processing primitive. The

FFT is composed from butterfly operations which compute z = y +x×w, where x and y are

the inputs from previous stage and w is a twiddle factor. All values are complex numbers,

therefore each multiplication involves 4 multipliers and 2 adders (bfly). A state machine is

implemented to control the dataflow of the circuits. Figure 2.3 illustrates the datapath of a

single butterfly which is used as the benchmark circuit.

2.5.6 Brace, Ga̧tarek and Musiela (bgm)

The datapath of a design to compute Monte Carlo simulations of interest rate model deriva-

tives priced under the Brace, Ga̧tarek and Musiela (BGM) framework is used as the final test

circuit (bgm) [77]. Denote F (t, tn, tn+1) as the forward interest rate observed at time t for

17

a period starting at tn and ending at tn+1. Suppose the time line is segmented by the reset

dates (T1, T2, ..., TN) (called the standard reset dates) of actively trading caps on which the

BGM model is calibrated. In the BGM framework, the forward rates {F (t, Tn, Tn+1)} are

assumed to evolve according to a log-normal distribution. Writing Fn(t) as the shorthand

for F (t, Tn, Tn+1), the evolution follows the stochastic differential equation (SDE) with d

stochastic factors:

dFn(t)

Fn(t)
= ~µn(t)dt + ~σn(t) · d ~W (t) n=1 . . .N . (2.4)

In this equation, dFn is the change in the forward rate, Fn, in the time interval dt. The drift

coefficient, ~µn, is given by

~µn(t) = ~σn(t) ·
n

∑

i=m(t)

τiFi(t)~σi(t)

1 + τiFi(t)
(2.5)

where m(t) is the index for the next reset date at time t and t ≤ tm(t), τi = Ti+1 − Ti and σn

is the d-dimensional volatility vector. In the stochastic term (the second term on the right

hand side of Equation 2.4), d ~W is the differential of a d-dimensional uncorrelated Brownian

motion ~W , and each component can be written as dWk(t) = ǫk

√
dt where ǫk is a Gaussian

random number drawn from a standardised normal distribution, i.e. ǫ ∼ φ(0, 1.0).

2.6 Summary

This chapter introduces the work related to the project. It first describes the common island-

style fine-grained fabric and the application-specific coarse-grained fabric. The CAD tools for

modelling an FPGA and the high level synthesis design tools for implementing user circuits

on an FPGA are presented. A set of floating point units that use in many experiments

are then illustrated. Some of the ideas in modelling reconfigurable fabric inspire me to

develop platform independent synthesisable models. The end of chapter suggests some of

the benchmark circuits to evaluate the customisable floating point FPGAs.

18

Chapter 3

Virtual Embedded Block

One major requirement of designing an FPGA architecture is to find a justified model which

can produce high quality results based on the user-defined circuit. This chapter describes a

methodology to we present a device and vendor independent methodology for rapid assess-

ment of the effects of adding embedded elements to an existing FPGA architecture. The

key element of our methodology is to adopt virtual embedded blocks (VEBs), created from

the FPGA’s logic resources, to model the placement and delay of the embedded block to be

included in the FPGA fabric. Using this method, the benefits of incorporating embedded

elements in improving application performance and reducing area usage can be quickly eval-

uated, even if an actual implementation of the element is not available. In addition, most

commercial quality CAD tools are allowed. Therefore, we can achieve commercial quality

timing and area results. For example, some optimisations such as retiming are possible

during the synthesis stage.

To measure the accuracy of this approach, block multipliers are modelled using VEBs

and compared with FPGAs having this feature. A study of the benefits of double-precision

floating-point embedded blocks is also made. Using this approach, the speedup of an appli-

cation as a function of the speed of the embedded block can be easily quantified, and these

studies are made for some of the benchmarks. Power consumption is not considered in this

study.

19

3.1 Methodology: Generic Aspects

In this section, the methodology is first described as a generic approach which can be applied

to any FPGA and the associated design tools. The next section will cover the actual vendor-

specific design flow used in this study.

We shall first provide an overview of our methodology that supports rapid generation

of various benchmark applications to target reconfigurable architectures with VEB models.

A modifiable compiler, called fly [64], is used so that different wordlength and back-end

operator instances can easily be produced from a single algorithmic description. This allows

both fixed- and floating-point implementations to be generated from the same description.

We apply this methodology to a set of benchmark circuits generated in this fashion.

To measure the accuracy of this approach, block multipliers are modelled using VEBs

and compared with FPGAs having this feature. A study of the benefits of double-precision

floating-point embedded blocks is also made. Using this approach, the speedup of an appli-

cation as a function of the speed of the embedded block can be easily quantified, and these

studies are made for some of the benchmarks. Power consumption is not considered in this

study.

In the descriptions that follow, we use the term logic cell (LC) for the smallest logic unit

in the FPGA (usually a lookup table plus a register) and configurable logic block (CLB) for

an array of LCs that are interconnected via the connection and switch blocks in the FPGA.

The basic strategy employed is to use the logic resources of a real FPGA to match the

expected position, area and delay of an application specific integrated circuit (ASIC) imple-

mentation of an embedded block (EB). This could be achieved using appropriate vendor’s

tools or generic tools such as VPR [15]. In order to estimate its performance, the EB is

modelled using logic cell resources in VEBs. Our model of an FPGA with EBs is called a

virtual FPGA as illustrated in figure 3.1.

To employ this methodology, an area and delay model for the EB is required. The model

should provide a high level estimate of the area and delay of the block, extracted from

simulations of an existing design or come from measurements of an actual ASIC. The area

20

Distributed VEBs in a virtual FPGA
Embedded Block in ASIC

tpd

L

W

Equivalent VEB using LC

L'

W
'

WL ≈ W' L'
tpd ≈ tpd'

tpd'

Figure 3.1: Modelling embedded elements in FPGAs using Virtual Embedded Blocks.

model is translated into equivalent logic cell resources in the virtual FPGA. In order to make

this translation, an estimate of the area of a logic cell in the FPGA is required. All area

measures are normalised by dividing the actual area by the square of the feature size, making

the area estimates independent of feature size. The VEB utilisation can then be computed

as the normalised area of the EB divided by the normalised area of a logic cell. This value is

in units of equivalent logic cells and the mapping encourages thinking about EBs in terms of

FPGA resources. Table 3.1 shows a number of logic cell area estimates. The area estimate

of the embedded blocks studied are given in section 3.3. We assume that there are sufficient

ports to allow interconnection of the EB to the routing fabric. This may not be the case in

some designs, particularly those with small EBs.

In order to accurately model delay, both the logic and wiring delay of the virtual FPGA

must match that of the FPGA. The logic delay can be matched by introducing delays in the

VEB which are similar to those of the EB. In the case of very small EB/VEBs, it may not be

possible to accurately match the number of ports, area or logic delay and some inaccuracies

will result. A complex EB might have many paths, each with different delays. It is possible to

either assume that all delays are equal to the longest one (i.e. the critical path), or generate

different delays for important paths. In the latter case, shorter delays can be obtained by

taking intermediate points along the longest delay path.

21

Device LCs/CLB Area/CLB Feature Size Normalised LC area

L A (µm2) f (µm) (N = A/Lf 2)

Apex 20K400E [31] 10 63161 0.18 195,000

Virtex E [31] 4 35462 0.18 267,000

Virtex II 3000 [17] 8 71, 429 × 0.7 0.12 434,000

Virtex II 1000 [18] 8 72, 782 × 0.7 0.12 442,000

Table 3.1: Estimates of logic cell area including configuration bit, buffer and interconnect

overheads. The Virtex II value of A is based on the estimate that 70% of the total die area

is used for logic cells, the other area being for pads, block memories, multipliers etc.

Modelling wiring delays is more problematic, since the placement of the virtual FPGA

must be similar to that of an FPGA with EBs so that their routing is similar. This requires

that:

• The absolute location of VEBs match the intended locations of real embedded blocks

(REBs) in the FPGA with EBs.

• The design tools be able to assign instantiations of VEBs in the netlist to physical

VEBs while minimising routing delays.

The first requirement is addressed by locating VEBs at predefined absolute locations that

match the floorplan of the FPGA with EBs. The assignment of physical VEBs is currently

made by manually specifying its placement. Automated methods will be the subject of a

later study.

3.2 Methodology: Vendor Specific Aspects

This section illustrates how a VEB can be used to model a real embedded multiplier block

in Virtex II device as a case study. All of the results described in this work are obtained

22

using the Synplicity Synplify Pro 8.0 synthesis tool, the Xilinx ISE 7.1i design tools, and the

Xilinx Virtex II XC2V6000-6-FF1152 FPGA device.

3.2.1 VEB Delay and Area model

While the ports for the VEB must be the same as those of the real embedded block, the

VEB logic delay is emulated using a dummy circuit in the VEB implementation. Although

many methods are possible, in this study, delays are inserted using adder carry chains for

the following reasons:

• Adder carry chains are common to most FPGA platforms, enhancing the portability

of the proposed methodology.

• The adder carry chain can be specified as a behavioural description, hence a platform

independent delay block can be constructed.

• It is relatively easy to adjust an adder’s carry chain delay by changing its length. This

feature is used to model different embedded blocks.

The combinatorial logic delay of an adder carry chain can be modelled by tpd = Topcy +

N−4
2

×Tbyp +Tciny, where N is the length of the adder carry chain, Topcy is the combinatorial

delay from the input to the COUT output, Tbyp is the combinatorial delay from CIN to

COUT, and Tciny is the combinatorial delay from CIN to the Y output via an XOR gate. If

the output is latched, the setup and hold time of a register (Tdyck) should be added to this

value. Typical values for these parameters in the Virtex II adder carry chain and multiplier

block are extracted from vendor’s timing analysis tool and given in table 3.2.

As an example, to model a registered multiplier block with delay of 3 ns, N = 30 gives

a logic delay (including setup and hold time) of 2.99 ns. In the Xilinx device, the carry

chains run along the columns. One issue to note is that the carry chain only runs in a single

direction in the device and breaking the carry chain introduces a long wiring delay. In our

current approach, a certain amount of trail-and-error is required to achieve a given delay.

23

Delay name Description delay (ns)

Topcy F to COUT 0.665

Tbyp CIN to COUT 0.084

Tciny CIN to Y via XOR 0.940

Tmult Embedded Multiplier 4.66

Tmultck Registered embedded 3.000

multiplier

Tdyck Register setup and 0.293

hold time

Table 3.2: Delay parameters for Virtex II-6 devices.

For the area model, the normalised LC area for the Virtex-II 1000 in table 3.1 is used in

this study.

3.2.2 Integration of VEB into toolchain

In order to produce a VEB, it is first synthesised from a hardware description language

(HDL) description. Features in the synthesis tool for regular design flows such as automatic

I/O block insertion, pipelining and retiming are disabled. The resulting netlist is placed

and routed using the vendor’s toolchain. Area constraints must be specified to force the

placement of the VEB in a rectangular block. The “trim unconnected logic” option is

disabled to ensure that the VEB is not optimised away. After place and route, another

constraint file which contains the actual placement information for each LC in the VEB is

generated. The placement information and the netlist of the VEB is compiled to create a

relationally placed macro (RPM).

To employ the VEB in an application, its HDL description is modified to instantiate the

corresponding VEB block. Since the VEB is considered as a black box during synthesis,

timing information must also be specified to allow the synthesis tool to take timing of the

24

block into account during optimisation. This makes optimisations such as retiming possible.

During place and route, the VEBs are placed in a regular locations on the FPGA, mod-

elling the expected locations of the EBs. This is achieved using placement constraints. The

design is then placed and routed in the usual fashion. The delays introduced in the VEB

model the logic delay and its placement means that realistic routing is required. The vendor’s

tools are used to obtain resource utilisation delay information about the circuit.

3.3 Results

3.3.1 Verification of the VEB Approach

In order to verify the results obtained using our methodology, we develop a VEB for an

embedded 18 × 18 multiplier (EM). As such multipliers are found in Virtex II devices, it

is possible to compare the routing and logic delays of benchmark circuits from the VEB

approach with those given by the actual EMs.

To estimate the normalised area of an EM in Virtex II, we assume that they occupy a

total of 2% of the die area which, in turn, is reported to be 93 mm2 [18]. This translates to

a normalised LC area of approximately 2,751,000, which is 6 LCs. The timing information is

extracted from the data sheet of the device; the relevant parameters are shown in table 3.2.

The benchmark circuits are implemented both using the EMs and the VEB multiplier.

Table 3.3 summarises the resource utilisation and critical path delay for both implementa-

tions. Let us first compare the critical path delay, which is usually the parameter of most

interest to a designer since it determines the maximum clock frequency at which the circuit

can be operated. As one can see from the table, the difference between the two approaches

is at most 11%. For most of the circuits, the critical path would involve the multiplier.

In those cases where it is not, the longest delay through the multiplier is very close to the

critical path of the circuit.

For the bgm benchmark, table 3.3 shows that a speedup of 1.2 is gained by retiming.

In designs where the stages are not as well balanced, as is often the case when a VEB is

25

introduced, more dramatic speedups are often observed. The retiming feature is absent from

most VPR based design flows [15].

Table 3.4 shows the breakdown of the critical path into logic and routing delays for the

EM implementation. The corresponding path in the VEB implementation is identified and

shown in the same table. The sum of the logic and routing delay for the EM should be equal

to the corresponding value in table 3.3, but due to clock skew it is slightly different. The

logic delays between the two implementations are very similar. The routing delays differ

greatly because the EM and VEB implementations often have different placement, but since

the nets are not on the critical path in the VEB implementation, they do not affect the

maximum operating frequency of the circuit. It would be possible to also match the routing

delays by locking placement of all of the LCs in the design rather than just the VEB, if closer

matching of the routing delays is desired.

For the bgm circuit with retiming enabled, there is no corresponding path between the

EM and VEB implementation because the registers are moved during this optimisation. The

critical path of the VEB implementation is shown in this case and the difference column left

blank.

3.3.2 Faster Embedded Multipliers

The VEB approach can be used to (a) obtain a single performance estimate for introducing

embedded blocks, (b) analyse performance/area trade-offs, and (c) determine the EM speed

required to meet a given system performance. To illustrate this point, we measure the bgm

performance over a range of VEB delays. Retiming is used in such experiments since, for

pipelined designs, improving the performance of one pipeline stage can create slack in another

stage, moving the bottleneck to a different stage of the pipeline. A similar situation occurs

in multicycle designs.

The results are shown in figure 3.2. An EM performance of 1 is the same as the per-

formance of the Xilinx EM, and a normalised system performance of 1 corresponds to the

execution time of the bgm benchmark. From this figure, one can determine the maximum

26

speedup that can be achieved in this application via faster EMs to be approximately 1.4,

which can be obtained by speeding up the block multiplier in Virtex II devices by 2.2 times.

As an example of estimating system performance of a design fabricated in a different

process technology, consider a 16× 16 bit combinational multiplier operating at 1 GHz with

an area of 0.474 mm2 at 1.3 V in 90 nm technology [27]. Assuming velocity saturated general

scaling of transistor lengths from 90 nm to 0.13 µm (1/S = 0.13/0.09), the delay would scale

by 1/S, i.e. from 1 ns to 1.44 ns [28]. The scaled area of the implementation would be 132

LCs. Such an implementation is thus 1.44 times faster but uses 3.6 times more area than

the Xilinx EM, and improves bgm performance by 15%.

3.3.3 Embedded Floating-Point Unit

An FPGA implementation of a double-precision FPU is made by synthesising the floating-

point library in Section 2.5 targeting Virtex II technology. The size and performance of the

adder and multiplier in this FPU are shown in table 3.5.

The area and delay model of a VEB floating-point unit (FPU) is made based on area and

speed estimates of the Blue Gene ASIC [29, 30]. This is a state-of-the art FPU fabricated

in a similar technology (0.13µm) to the Xilinx Virtex II. It operates at a clock frequency of

700 MHz, with an area estimated to be 4.26 mm2 [29] which translates to 570 LCs. The

area estimate is very conservative, since this FPU is much more sophisticated than the one

used for the FPGA implementation.

Since the Blue Gene 700 MHz FPU design has a much smaller logic delay than the routing

delay of the FPGA, a better implementation can be obtained by reducing both its latency

and clock frequency by a factor of 5. Thus the VEB FPU considered has a clock frequency

of 140 MHz with a one cycle latency. This essentially trades off clock frequency for reduced

latency.

The performance of the Virtex II FPGA is compared to a virtual FPGA with embedded

FPUs using the floating-point benchmarks. A summary of the results is given in table 3.6.

As one can see, augmenting the FPGA with embedded FPUs leads to a mean improvement

27

in area and delay by factors of 3.7 and 4.4 respectively. In contrast, a recent investiga-

tion of embedding double-precision FPUs in FPGAs based on VPR with a different set of

benchmarks results in estimates of average area savings of 55.0% and average increase of

40.7% in clock rate over existing architectures [16]. We attribute the differences to: different

benchmarks being used; CAD tools; FPU delay and latency; FPGA model; and our use of

retiming optimisations during synthesis.

Note that, for instance in the case of the ode benchmark, one can potentially support

3.8 times more dedicated FPUs in the same area as FPUs from programmable resources,

meaning that more instances of the design can operate in parallel. Hence in the limit, the

system throughput can be improved by up to 40 times if we include both improvement in

speed and in parallelism due to area reduction.

Dedicated FPUs are wasted resources for designs that do not make use of them; however,

each FPU occupies approximately the same area as 72 CLBs, which translates to 0.9% of

the chip area of an XC2V6000 device.

3.3.4 Impact of Embedded Block Performance

Experiments are conducted, similar to those in section 3.3.2, to assess the impact of embed-

ded block performance on system performance. Specifically, we study the speedup of the

bfly benchmark as a function of the FPU performance (figure 3.3). It can be seen that a

modest improvement in FPU speed can lead to a large improvement in the bfly benchmark:

for instance improving the FPU performance by 30% improves bfly performance by 40%.

Beyond a factor of 1.4, the speedup of the benchmark increases rather more slowly. This

type of information can be used to determine the best option for ASIC implementations of

EBs in which the synthesis tools offer a wide range of possible area/delay trade-offs.

28

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.00 1.50 2.00 2.50 3.00

Normalised EM Performance

N
or

m
al

is
ed

 S
ys

te
m

 P
er

fo
rm

an
ce

Figure 3.2: Performance of fixed-point bgm benchmark with different VEBs, with retiming.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1 1.5 2 2.5 3

Normalised FPU Performance

N
or

m
al

is
ed

 S
ys

te
m

 P
er

fo
rm

an
ce

Figure 3.3: Performance of floating-point bfly benchmark with different FPU delays, with

retiming. frequency.

29

3.4 Summary

This chapter propose a methodology for estimating the effects of introducing embedded

blocks to existing FPGA devices. The methodology is evaluated by modelling block multipli-

ers in Xilinx Virtex II devices, and we find that prediction of critical paths to approximately

10% accuracy can be achieved. The methodology is then applied to predict the impact of

embedded floating-point units, showing a possible reduction in area of 3.7 times and speedup

of 4.4 times.

30

Benchmark Size (slices) # of EMs EM delay (ns) VEB delay (ns) Difference (ns) Difference (%)

dscg 177 4 4.599 4.981 0.382 8%

fir4 193 4 4.616 4.704 0.088 2%

ode 204 2 4.402 4.539 0.137 3%

mm3 469 3 4.859 4.815 0.044 1%

bfly 629 4 5.668 5.224 0.444 8%

mul34 141 4 11.191 11.287 0.096 1%

mul68 604 16 12.553 14.099 1.546 11%

mul136 2426 64 14.632 13.248 1.384 10%

bgm 2315 46 14.055 13.866 0.189 1%

bgm∗ 2205 46 11.594 11.602 0.008 0%

Table 3.3: Summary of resource utilisation and critical path delay for embedded multiplier

(MULT18X18) and VEB implementations. A ∗ indicates that retiming is enabled during

synthesis.
Benchmark EM delay Equivalent VEB path delay Difference

logic (ns) routing (ns) logic (ns) routing (ns) logic (ns) logic (%) routing (ns) routing (%)

dscg 3.449 1.15 3.445 1.536 0.004 0.116% 0.386 25%

fir4 3.449 1.167 3.445 0.815 0.004 0.116% 0.352 43%

ode 3.449 0.911 3.445 0.672 0.004 0.116% 0.239 36%

mm3 3.449 1.366 3.445 1.067 0.004 0.116% 0.299 28%

bfly 3.449 2.062 3.445 1.411 0.004 0.116% 0.651 46%

mul34 8.818 2.345 8.99 2.202 0.172 1.913% 0.143 6%

mul68 8.682 3.687 8.99 4.96 0.308 3.426% 1.273 26%

mul136 8.682 5.95 8.99 4.258 0.308 3.426% 1.692 40%

bgm 10.119 3.901 10.019 1.916 0.1 0.998% 1.985 104%

bgm∗ 8.439 3.155 7.631 3.971 n/a n/a n/a n/a

Table 3.4: Breakdown of critical path delay for embedded multiplier and VEB implementa-

tions. A ∗ indicates that retiming is enabled during synthesis.

31

Operator size # of EMs Latency Delay

(LCs) (ns)

FP Adder 3554 0 5 7.465

FP Multiplier 4300 9 5 13.197

FPU (VEB) 570 0 1 7.151

Table 3.5: FPGA implementation results for floating-point operators, where FPU(VEB)

indicates the equivalent ASIC implementation of FPU using VEB approach. The FPU(VEB)

is 6 times smaller than the floating-point adder and has only one clock cycle latency.

FPGA VEB Reduction Factor

EMs throughput size delay FPUs throughput size delay Area Delay

(# of cycle) (LC) (ns) (# of cycle) (LC) (ns)

dscg 36 1 19006 22.711 6 1 3420 + 940 8.807 4.4 2.6

fir4 36 1 20590 23.545 7 1 3990 + 996 9.539 4.1 2.5

ode 18 20 13984 17.756 5 4 2850 + 870 8.525 3.8 10.4

mm3 27 225 17236 19.320 5 45 2850 + 2390 8.587 3.3 11.3

bfly 36 1 25640 20.245 8 1 4560 + 3424 8.821 3.2 2.3

Geometric Mean: 3.7 4.4

Table 3.6: FPGA implementation results for floating-point benchmark applications. The

VEB size is given as the FPU area (in equivalent LC resources) plus the LC resources

needed to implement the rest of the circuit.

32

Chapter 4

Synthesisable Datapath FPGA Fabric

To allow design exploration for FPGA architecture, it is relatively difficult to employ full-

custom design such as module generation which is common in SRAM design, where SRAM

module generator usually have only one or two critical parameters such as bitwidth and

address width. However, an FPGA fabric involves different parameters and it is less likely

to introduce a module generator which is similar to those for SRAM. To remedy this, we

propose a synthesisable methodology to model FPGA fabric.

In this technique, an ASIC designer would obtain a synthesisable version of their pro-

grammable logic fabric (a soft core) written in a hardware description language, and would

synthesise it along with the rest of the ASIC. The primary advantage of this technique is

that a new type of FPGA can be created almost immediately by modifying the architectural

parameters.

This chapter proposes this approach. Based on this methodology, we create an FPGA

architecture which can be synthesised on an ASIC device. This architecture exploit char-

acteristic of bus-based operation to produce bus-oriented coarse-grained architecture which

optimised for performing computations such as those found in signal processing and arith-

metic applications. Although such cores would be less flexible than their bit-level counter-

parts, this is less of a concern in an embedded FPGA core than in a stand-alone FPGA

since the context in which the core will be used is known when the chip is designed. As

33

an example, a programmable logic core embedded into the datapath of a signal processing

ASIC will certainly be used to implement multiply/accumulate-type functions, rather than

a more general logic circuit. This allows us to create a core that is optimised for datapath

operations without worrying about how well it can implement random logic functions. In

addition, if buses are used to connect the programmable logic core and the fixed function

circuitry (as would be expected in a datapath-oriented circuit), the specific pins on which

these buses are mapped, as well as the width of the bus, are known at the time the fabric

is instantiated, and will not change over the lifetime of the ASIC. This allows us to further

optimise our fabric.

4.1 Architecture

In this section, we first outline the requirements of an architecture for a synthesisable FPGA

core, and then describe our architecture in detail. We actually describe a family of architec-

tures, where each member of the family is differentiated by various parameters. An FPGA

designer would select an architecture from this family based on the amount of programmable

logic required, as well as the number and nature of the connections to the programmable

logic.

4.1.1 Requirements of a synthesisable architecture

The proposed design methodology requires that the programmable logic fabric be synthe-

sisable. By this, we mean the fabric can be synthesised and implemented using existing

synthesis and ASIC design tools with no modifications to the tools or the CAD flow.

For a fabric to be synthesisable in this way, it must not contain combinational loops.

Standard synthesis tools, timing analysis tools, and power estimation tools are optimised for

circuits without combinational loops. Although circuits with such loops can be synthesised,

this usually requires the designer to manually “break” the loops by identifying some false

paths. This requires considerably more understanding about the internals of the core that a

34

typical ASIC designer would have. Note that a standard unconfigured FPGA contains many

combinational loops. A designer will rarely configure the FPGA to implement combinational

loops, but before configuration, such loops exist.

On the other hand, our methodology provides a unique opportunity for optimisation.

When designing a hard layout for an FPGA, layout effort is reduced by dividing the design

into tiles, where each tile is identical. In our case, the tiles are synthesised and laid out

automatically by CAD tools; thus, it is no longer critical that each tile is identical.

One important aspect of our work is that we are focusing on small user circuits. Large

circuits would typically be implemented using a hard-programmable logic core. An example

circuit might be a small debug controller, as will be described later in this report.

4.1.2 Our architecture

Figure 4.1 shows our architecture. The fabric contains D identical wordblocks, each contain-

ing N identical bitblocks. Unlike a fine-grained FPGA, the bitblocks within a wordblock are

all controlled by the same set of control bits. This means all bitblocks within a wordblock

perform the same function. We will consider the implication of this feature on density in

Section 4.3.

As shown in Figure 4.2, each bitblock contains two lookup-tables, several multiplexers,

and a flip-flop. A single wordblock can implement an N bit adder/subtractor, an N -bit wide

three-input multiplexer, any other three-input logic function, or some five-input functions.

Two control inputs k1 and k2 (from the Control Block, to be described below) allow for

efficient implementation of multiplexers and other datapath functions that require a control

input. The same two control lines are driven to all bitblocks in a wordblock. The select lines

of the three multiplexers in Figure 4.2 as well as the function lines of the two lookup-tables

are driven by configuration bits. In total, 35 configuration bits are required per bitblock; as

described above, these bits are shared between all bitblocks in a wordblock. The wordblock

also contains a programmable shifter, which can pass data through unchanged, or shift the

word one bit to the right (signed or unsigned shift) or one bit to the left; the state of the

35

� � � � � � � � � � � �	 �
 � � �
 � � � � � � � � �
 � �

� � � � � � � � � �
� � � �� � � �� � � �� � � � � �

� � � � � � � � �
 � � �

� �
� � � � � � � � � �

� � � �� � � �� � � �� � � � � �
� � � � � � � � �
 � � �

� � � � � � � � �� � �
� � � �� � � �� � � �� � � � � �

� � � � � � � � �
 � � �
� � � � � �
 � �

� � � � �
 � �� � � � � � � � � � !
" � � � � � � � � �
 !

� � � �
 � �� � � � � � � � � # ! # � � � �
 � �
 � �
� � � � � �� � � � � � !

� � � � � � �� �
 � � �

$%&'()* $%&'()* $%&'()*

Figure 4.1: Fabric architecture (configuration elements not shown).

shift block is controlled by two configuration bits.

Each wordblock receives up to three inputs from either the M primary bus inputs, the

F feedback paths, the C constant registers, or any of the outputs of wordblocks to the left.

The control lines for the input selection multiplexers are driven by configuration bits. Note

that buses are switched as a unit; this improves density, since one set of configuration bits

can be shared among all bits. However, it also reduces flexibility, since it is not possible to

select part of one bus and part of another bus (this functionality can be implemented within

a wordblock by careful use of a “mask” in one of the C constant registers). The R output

buses of the architecture can be selected from the same set of M + F + C buses or from the

output of any of the D wordblocks. The same signals (except the C constants) can be fed

back, through a flip-flop, to all wordblocks; this provides a mechanism to connect wordblock

outputs to the inputs of wordblocks to the left and also supports an efficient way to delay

36

+ , - . /+ , - . / 0 1 2
3 4 5

5 6 7
5 8 9 :

; 8 7 : < 8 => ? ; 8 7 : < 8 => @ A
; B C D ? E E F G ; B C D H H E E @ G ; B C D H + G

Figure 4.2: Bitblock (status flags not shown).

signals by one clock cycle without using a wordblock.

Wordblocks can efficiently implement combinational functions including adders and mul-

tiplexers, and can perform masking operations in conjunction with one or more of the con-

stant registers. However, they cannot efficiently implement multipliers. Since multipliers

are an important part of our target applications, selected wordblocks in the fabric are re-

placed with embedded multipliers. Each embedded multiplier has two N -bit inputs which

are selected from the M + C + F + i (where i is the number of wordblocks to the left of

the multiplier) buses using routing multiplexers. The multiplier produces two output buses,

one for the high order result and one for the low order result. These outputs can be selected

by all subsequent routing multiplexers including the output and feedback multiplexers. We

denote the number of multipliers as A, and assume each multiplier displaces one wordblock

(so, the number of wordblocks is D − A).

Although our architecture is aimed at datapath-oriented applications, a small amount of

control logic is sometimes needed to control the datapath. Such logic can be implemented in

the Control Block. This block contains fine-grained product-term based programmable logic

resources, and is similar to the architecture described in [46]. The fabric contains P product-

term blocks, each with 9 inputs, 10 product terms, and 3 outputs (this was shown to work

well in [46]). The control block also contains registers to support state machines. Inputs

to the Control Block are selected from a number of status signals generated throughout the

37

D Number of Wordblocks (incl. multipliers)

N Bit Width

M Number of Input Buses

R Number of Output Buses

F Number of Feedback Paths

C Number of Constant Registers

A Number of Multipliers

P Number of Product-Term Blocks

Table 4.1: Architectural parameters.

datapath. Each wordblock generates a carry-out, an overflow, an MSB, an LSB, and a zero

flag; each feedback path generates the same flags, with the exception of the carry-out. This

large number of status bits are multiplexed into a small number of inputs using the Status

Multiplexer, which is controlled by configuration bits. The exact number of these status

bits that can be provided to the Control Block depends on the size of the Control Block.

Similarly, the Control Block generates a number of outputs. These outputs can be provided

to various control lines in the fabric using the Control Multiplexer; for each control line in

the fabric, any of the Control Block outputs or the constants ‘0’ or ‘1’ can be selected.

The parameters used to describe the architecture are summarised in Table 4.1.

4.2 Example Mapping

To demonstrate how this architecture can be used to implement a circuit, we focus on a

single example. The example is a common debugging operation [42]; the circuit monitors

two buses, and counts the number of times a certain mask (composed of 1’s, 0’s and “don’t

care” bits) matches each bus, as well as the number of times both buses match the mask at

the same time.

Figure 4.3 illustrates how the application can be implemented. Two constant registers

38

IJKLM NLOIJKLM NLOPQJOMRJMPQJOMRJMSTTUNRPVSTTUNRPVSTTUNRPV WXYZXY[X\]\^ _
`TOTM

aQJM`Qb cbQPVdefg defg ehh ehh ehh
Figure 4.3: Example mapping.

are used to hold the mask value (two registers are required so that “don’t care” bits can be

specified). One wordblock combines these two mask values and the first input bus to produce

a 0 if the bit matches (or is a “don’t care”) or a 1 otherwise. A second wordblock performs

the same function on the second bus. Both wordblocks provide their zero flag (indicating

a match has occurred) to the Control Block; the Control Block provides this signal to the

carry-in signals of two adders (each implemented in a wordblock). The Control Block also

provides the AND of the two zero flags to a third adder (implemented in another wordblock).

Each of the three accumulated counts are stored in the feedback registers; these counts are

fed back to the input signals of the adders. The reset control lines for the feedback registers

are also controlled by the Control Block. Finally, the three adder outputs are connected to

the outputs of the fabric.

4.3 Parameter optimisation

In this section, we first determine the impact of the parameters in Table 4.1 on the area and

delay of the fabric.

Table 4.2 shows a breakdown of the area of a fabric with N=16, D=16, M=3, R=2, F=3,

C=2, A=4, and P=4. The various components were synthesised using Synopsys Design

Compiler, and the cell area predicted by Synopsys was reported. Configuration circuits,

clock circuits, and all other essential parts of the core were included in the synthesisable

39

Module Area in µm2 Percentage

D
a
ta

p
a
th

Wordblocks 86, 251 23.8 %

Multipliers 45, 236 12.5 %

Config. Bits 24, 323 6.7 %

Feedback Regs 2, 322 0.6 %

Routing Muxes 86, 251 33.2 %

Total Datapath 120, 460 76.7 %

Status Multiplexer 18, 520 5.1%

Control Multiplexer 14, 603 4.0%

Control Block 51, 418 14.2%

Total 363, 136 100.0%

Table 4.2: Area breakdown.

model. Although it would be more accurate to perform place and route on the Synopsys-

generated netlist and measure the chip area directly, previous results have shown that the

Synopsys area results have a good correlation to the final chip area results [45]. A 130nm

process was assumed.

As one can see, most of the area is used to implement the datapath portion of the fabric.

Within the datapath, the largest component of the area is due to the routing multiplexers.

The four multipliers and 12 wordblocks also consume a significant amount of area. The

configuration bits within the datapath consumes 6.7% of the entire fabric.

Figure 4.4(a) shows the impact of N and D on area. In this experiment, M=3, R=2, F=3,

C=2, A=4, and P=4. As the graph shows, the area is roughly proportional to both D and

N ; increasing D increases the number of wordblocks and corresponding routing multiplexers,

while increasing N increases the sises of these blocks.

The impact on area of the number of multipliers, A, is shown in Figure 4.4(b). All other

parameters are as before, with N=16 and D=32. Intuitively, as A increases, the area goes

up. This is despite the fact that the area of the 32-bit multiplier is roughly the same as the

area of a 32-bit wordblock (including the associated routing multiplexers and configuration

40

�

���

���

���

���

���

���

���

���

� � � � � � � �

1XPEHU�RI�:RUGEORFNV��'�

&
HO
O�$
UH
D�
�[
��

��
P

� �

1 ��

1 ��

1 ��

1 �
����
����
����
����
����
����
����
����
����
����
����

� � � � � �� ��

1XPEHU�RI�0XOWLSOLHUV��$�

1 ����' ��

&
HO
O�$
UH
D�
�[
��

��
P

� �

�D��,PSDFW�RI�'�DQG�1 �E��,PSDFW�RI�$

Figure 4.4: Parameter sweeps, where M=3, R=2, F=3, C=2, A=4, P=4 unless otherwise

specified.

bits). The reason that the area goes up as A increases is that the multiplier produces two

bus outputs (a wordblock produces one). This increases the size of the routing multiplexers

in all downstream wordblocks, as well as the output multiplexers and feedback multiplexers.

The graph shows that the increase from A = 0 to A = 1 is larger than the increase from

A = 1 to A = 2. This is because if there is only one multiplier, it is placed in the left-most

slot. This increases the size of all subsequent routing multiplexers. When a second multiplier

is added, it is placed in the middle of the fabric, so only half of the routing multiplexers are

increased (those to the right of the new multiplier).

Figure 4.5(a) shows the impact of P on the area of the fabric. As one can see, the number

of product-term blocks in the control block has a significant effect on the size of the overall

architecture.

We also measured the impact of M , R, C, and F . Each of these parameters had a linear

effect on area. Increasing M from 1 to 8 increased the area by 15%, increasing R from 1

to 8 increased the area by 7.8%, increasing F from 0 to 6 increased the area by 25%, and

increasing C from 0 to 8 increased the area by 17%. Parameter R (the number of output

buses) has the smallest effect on area, since an increase in R does not imply an increase in

the size of any of the routing multiplexers. For all other parameters, as the parameter is

41

&RQILJXUDWLRQ�6HWV�SHU�:RUGEORFN

&
HO
O�$
UH
D�
�[
��

��
P

� �

�

���

���

���

���

���

���

���

���

� � � �� ��

1XPEHU�RI�3URGXFW�7HUP�%ORFNV�LQ�WKH�&RQWURO�%ORFN��3�

' ��

' �

������

&
HO
O�$
UH
D�
�[
��

��
P

� �

�

���

���

���

���

���

���

���

1 ��

1 �

�D��,PSDFW�RI�VL]H�RI�&RQWURO�%ORFN �E��,PSDFW�RI�:RUGEORFN�JUDQXODULW\

Figure 4.5: Parameter sweeps, where M=3, R=2, F=3, C=2, A=4, P=4 unless otherwise

specified.

increased, additional buses are created; these buses are supplied to all routing multiplexers,

making them larger. Parameter F has the largest impact since each feedback register is

associated with three status bits and one control bit.

In our architecture, the same set of 35 configuration bits are shared among all bitblocks in

a wordblock. To investigate the implication of this feature on density, we varied the number

of configuration bit sets per wordblock from 1 (the baseline architecture) to N , in which

every bitblock is controlled by a separate set of 35 configuration bits. The impact on area

is shown in Figure 4.5(b) for two values of N (all other parameters are the same as before).

As the graph shows, the more flexible architecture, the more area is required (because of the

extra configuration bits). For N = 16, an architecture in which each bitblock has its own

configuration set is 60% larger than an architecture in which all bitblocks within a wordblock

share a configuration set.

The maximum clock frequency at which the fabric can run depends on the configura-

tion implemented in the fabric. Table 4.3 shows post-synthesis, pre-place and route delay

estimates for various paths within the fabric. The delay through the wordblock is the delay

from the output of the register in one wordblock to the input of the register in the next

wordblock. This quantity is independent of N , and depends very slightly on M , C, and F ,

42

Delay through one wordblock 3.25ns

Delay through one multiplier (8 bits) 5.39ns

Delay through one multiplier (16 bits) 8.50ns

Delay through carry chain (8 bits) 8.71ns

Delay through carry chain (16 bits) 14.93ns

Delay through 24 wordblocks and 8 multipliers 178ns

Table 4.3: Delay estimates.

as well as the position of the wordblock in the array (since these parameters determine the

size of the routing multiplexer used to select inputs for the second wordblock). On the other

hand, the delay of the multiplier goes up as N increases. Measurements of the maximum

carry chain delay within one wordblock are also given in the table (from the carry-in of the

least significant bit to the carry-out of the most significant bit). The last entry in the table

shows the delay of a combinational path that passes through all wordblocks in a fabric with

D=32 and A=8; clearly, most applications would not configure the fabric to have such a

long critical path.

4.4 Mapping results

In this section, we use benchmark circuits to compare our architecture to a fine-grained

synthesisable programmable logic core [46]. We first describe our benchmark circuits. We

then present mapping results, first assuming that the architecture is tailored for each bench-

mark, and then assuming the more realistic case in which the fabric is not tuned for each

benchmark.

4.4.1 Benchmark circuits

As described earlier, we are focusing on user circuits. An example is the debug controller

described in Section 4.2. Such circuits typically contain a single datapath controlled by

43

Bench- Fabric Parameters Datapath Fined-Grain ASIC Fine-Grain/ Datapath/

mark D N M R C F A P (ours) [46] Datapath ASIC

bfly 8 8 6 1 0 5 4 0 68,190 132,339,335 9,300 1940 7.33

dotv3 5 8 6 1 0 2 3 0 34,119 65,534,780 6,575 1921 5.19

dscg 8 8 3 2 0 2 4 1 72,178 116,271,968 9,473 1611 7.62

fir4 11 8 1 1 4 0 0 0 76,213 130,971,120 9843 1718 7.74

egcd 27 8 2 4 1 9 0 27 1,225,231 22,776,474 10,420 18.6 117

momul 13 8 7 2 0 6 2 8 294,135 11,448,589 7,097 38.9 41

median 8 16 1 1 0 4 0 2 142,172 10,733,962 4,420 75.5 32

debug1 5 16 2 3 2 3 0 1 87,265 1,302,928 3,484 14.9 25

Table 4.4: Area results when the fabric is optimised for each benchmark circuit.

a small controller; circuits with multiple intersecting datapaths are likely too large to be

implemented using a synthesisable core, and thus, we do not consider such circuits in this

section.

We used eight benchmark circuits. Three of the benchmarks, bfly, dscg and fir4 are de-

scribed in Section 2.5. The other four circuits were constructed specifically for this work:

The dotv3 benchmark computes the dot vector product of two inputs. The egcd circuit imple-

ments an extended binary greatest common divisor algorithm [41]. The momul benchmark

is a Montgomery Multiplier [41]. The median circuit is a median filter that accepts stream-

ing data and returns the median (actually second-largest) of the last four entries. Finally,

the debug1 benchmark is the debugging circuit considered in Section 4.2. All benchmarks

assume 8 bit operands, except median and debug1 which assume 16 bit operands. We have

specifically chosen these circuits since they are small, and support the type of application we

would expect to implement on a synthesisable programmable logic core. Large user circuits

would be typically implemented using a hard programmable logic core.

4.4.2 Optimised parameters

We first compare our architecture to the best previous synthesisable architecture [46] and to

a non-programmable ASIC implementation of each circuit. This will give an upper-bound

44

of the efficiency of our architecture if tuned properly.

To map each benchmark to our architecture, the benchmark was first split into data-

path and control sections. The datapath portion of the circuit was mapped (by hand) to

wordblocks, and appropriate values of D, N , M , R, D, A, F , and C were chosen. The con-

trol section was mapped to product-term blocks, using PLAmap [32]. Using the number of

product-term blocks required by PLAmap to implement the circuit, as well as the datapath

parameters described above, a custom-built tool was used to generate an appropriately-sized

fabric. This fabric was then synthesised using Synopsys Design Compiler, and the cell area

predicted by Synopsys was reported. Again, a 130nm CMOS process was assumed. The

results are shown in Column 10 of Table 4.4.

For comparison, we also show the area that would be required to implement the same

circuit using the fine-grained synthesisable fabric from [46] in Column 11. These measure-

ments were obtained using the architectures and tools described in [46]. We were unable to

compare our architecture to the architecture described in [45], since that architecture only

supports combinational circuits, and most of our benchmarks are sequential. However [46]

shows that their architecture is significantly more dense than that in [45], even for combina-

tional circuits. Column 12 shows the area required by the benchmark circuit if synthesised

directly in standard cells (in which case there is no programmability).

Column 13 shows the ratio of the area required to implement each benchmark using the

fine-grained fabric to the area required to implement the same benchmark in our architecture.

As the table shows, there are two categories of circuits. Circuits bfly, dotv3, dscg and fir4

all show ratios of between 1610 and 1940. In other words, our architecture is 1610 times

to 1940 times more area-efficient than the fine-grained fabric. The remaining circuits show

more modest ratios between 14 and 75.

These results are dramatic. First consider those benchmarks with ratios between 14 and

75. Given that, for each circuit, we are creating a fabric in which configuration bits are

shared between either 8 or 16 bits, we would expect to see a ratio of no larger than 8 or 16.

The reason our ratios are larger than this has to do with the inefficiencies of the fine-grained

45

architecture when implementing very large circuits. The architecture in [46] contains many

routing multiplexers; the size of these multiplexers and the number of these multiplexers

both grow linearly with the size of the fabric. For the small circuits for which the previous

architecture was designed, these multiplexers are small. However, when the fabric is scaled

large enough to implement our benchmark circuits, these multiplexers become unwieldy,

causing the area to grow significantly.

This does not explain the four benchmarks that have ratios greater than 1600. These

benchmarks all contain a significant number of multipliers. In our architecture, these mul-

tipliers are implemented as a hard embedded block (as in many commercial stand-alone

FPGAs). On the other hand, the fine-grained architecture does not contain these embedded

blocks, meaning the multipliers must be implemented using the normal logic resources. This

is aggravated by the fact that product-term based architectures, such as [46] are notoriously

bad at implementing XOR functions, which are common in multipliers.

Column 14 shows the ratio of the area required to implement each benchmark circuit in

our fabric to the area required to implement the same benchmark circuit using fixed ASIC

cells (with no programmability). This measure is the overhead resulting from configurability

using our architecture. As the table shows, for the circuits with a significant number of

embedded multipliers, this ratio is between 5 and 8. For circuits without a significant number

of embedded multipliers, this number is between 25 and 117. It is interesting that these larger

numbers are of the same order of magnitude as the ratio of an FPGA implementation to

an ASIC implementation [38]. In other words, the overhead due to configurability in our

architecture is similar to the overhead inherent in a hand-designed stand-alone FPGA. This

is a surprising result; it shows that synthesisable cores can provide the density that designers

currently accept from non-synthesised programmable logic devices.

4.4.3 Derived parameters

When gathering the results in Section 4.4.2 we chose all fabric parameters independently

for each circuit. This unfairly biases the results in our favour. One of the drawbacks of

46

Benchmark Fabric Parameters Computed Datapath Fine-Grain ASIC Fine-Grain/ Datapath/

D N M R C F A P (ours) [46] Datapath ASIC

bfly 16 8 6 1 4 8 4 6 332,091 132,339,335 9,300 399 35.7

dotv3 9 8 6 1 3 5 3 3 225,518 65,534,780 6,575 291 34.3

dscg 16 8 3 2 4 8 4 6 325,029 116,271,968 9,473 358 34.3

fir4 16 8 1 1 4 8 4 6 307,154 130,971,120 9843 426 31.2

egcd 70 8 2 4 18 35 18 24 3,778,611 22,776,474 10,420 6.02 363

momul 22 8 7 2 6 11 6 8 486,316 11,448,589 7,097 23.5 68.5

median 9 16 1 1 3 5 3 3 194,654 10,733,963 4,420 55.1 44

debug1 6 16 2 3 2 3 2 2 119,286 1,302,928 3,484 10.9 34

Table 4.5: Area results when low-level parameters are computed.

partitioning the fabric between control and datapath is that different user circuits require

different amounts of control and datapath; since we do not know what will be implemented in

the fabric when the ASIC is designed, choosing the amount of each type of fabric is difficult.

If the partition is not chosen carefully, either control resources or datapath resources will be

wasted. This is not a problem with fine-grained architectures, since the fine-grained fabric

can be used to build either control or datapath structures. In this section, we address this

issue by fixing this parameter (as well as other parameters) as a function of the fabric size.

We repeated the experiments in Section 4.4.2. We choose values of D, N , M , and R

independently for each benchmark circuit. This is reasonable; when including a fabric in an

ASIC, the bit-width, the number of input and output buses, and the desired fabric size is

known. Unlike the previous experiments, however, we calculated the remaining parameters

as a function of D. If the resulting architecture has more constant registers, feedback paths,

multipliers, or product term blocks than are needed by the benchmark circuit, then the extra

resources are wasted. On the other hand, if the fabric does not contain enough of any of these

resources, the fabric size (D) is increased until the benchmark circuit can be implemented.

Table 4.5 shows the results, using the same columns as in Table 4.4. The size of the fine-

grained fabric and the ASIC implementation are copied into Table 4.5 for convenience. In

all cases, we compute C = ⌈D
4
⌉, F = ⌈D

2
⌉, A = ⌈D

4
⌉, and P = ⌈D

3
⌉. Although these may not

be the optimum ratios, we do not have enough benchmark circuits to determine optimum

47

ratios for each parameter. These ratios were selected because they appear “reasonable”

based on our experience (for example, since each product term block has three outputs,

setting P = ⌈D
3
⌉ means that, on average, one select line per wordblock can be generated).

If additional experiments were conducted, and the optimum ratios found, they would tend

to improve the results in this section.

As the results in Table 4.5 show, in general, the area required to implement each bench-

mark circuit on our fabric has increased, due to the benchmark circuits not exactly matching

the generated architecture. The ratio of the area required to implement each circuit in the

fine-grained architecture of [46] to the area required to implement the same benchmark in

our fabric now ranges from 10.9 to 426, while the ratio of the area required to implement

each circuit in our fabric to the area required to implement the same circuit in an ASIC

ranges from 31.2 to 363.

4.5 Proof-of-concept layout

As a proof-of-concept, we performed place and route on the datapath portion of our fabric

with D=12, N=8, M=7, R=2, F=6, A=0, and C=0. The Verilog description of the fabric

was synthesised with Synopsys Design Compiler, targeting the STMicroelectronics 90nm,

7-layer metal process using the STMicroelectronics CORE90GPSVT standard cell library.

The netlist was flattened into a single level of hierarchy before layout. The pre-layout netlist

contained a total gate area of 300098 µm2. The cell placement, cell sizing and repeater

insertion was performed by Cadence SoC Encounter. Detailed wire routing was performed

using Cadence NanoRoute and was completed with no violations. The total gate area after

place and route was 336402 µm2. The placement region set to approximately 625 µm ×
625 µm, resulting in a gate density of 86.1%.

48

Figure 4.6: Proof-of-concept layout.

4.6 Comparison to previous work

Our architecture inherits ideas from previous work on fine-grained synthesisable fabric,

datapath-oriented FPGAs and coarse-grained reconfigurable architectures, such as RaPiD.

This section compares our architecture to several previous studies.

4.6.1 Fine-grained synthesisable fabric

We have compared our architecture to the best synthesisable architecture in Section 4.4.2

using a set of benchmark circuits. The architecture proposed in [46] is fine-grained and

the configurability is provided by programmable logic arrays (PLA). For the circuits which

contain significant number of multipliers, our architecture is 1610 times to 1940 times more

area-efficient than the fine-grained fabric. This is because the multiplier in our architecture

are implemented as a hard embedded block while the fine-grained architecture does not

contain these blocks. It means the multipliers must be implemented using normal logic

resources which contributes large area consumption.

49

For some other circuits which do not have large number of multipliers, the area ratio is

between 14 and 75. We observe that the architecture in [46] is not efficient when imple-

menting large circuits. The architecture in [46] contains many routing multiplexers. Both

the size of these multiplexers and the number of multiplexers grow linearly with the size of

fabric. When the fabric is scaled large enough to implement the given benchmark circuit,

these multiplexers become unwieldy and it causes the area to grow significantly.

4.6.2 Datapath-oriented FPGAs

Several previous studies have considered datapath-oriented FPGAs [33, 36, 39, 47, 48]. In

these architectures, configuration bits are shared among multiple lookup-tables and multiple

routing switches.

In these previous works, it is assumed that the FPGA is to be laid out by hand or

using a custom layout tool, and thus, no attempt is made to remove combinational loops

in the unprogrammed fabric. This is a key requirement of a synthesisable architecture.

Although these architectures can be synthesised (as in [39]), the combinational loops will

require designers to “break” these loops by declaring false paths; this increases the difficulty

of including these fabrics in a large FPGA.

A second difference between these datapath FPGAs and our architecture is that these

previous architectures have been optimised assuming that the bus width of the target appli-

cation and the pin assignments of the buses are not known when the fabric is designed. This

limits the amount of optimisation possible; for example, in [47], it is found that the number

of blocks sharing a set of configuration bits should be no more than four. In our context,

the bus width and pin assignments are determined when the ASIC is designed, and will not

change over the lifetime of the chip. This allows us to share a set of configuration bits across

all datapath bits in a word.

50

4.6.3 Coarse-grained fabrics

Coarse-grained architectures, in which lookup-tables are replaced by ALUs, have also been

described in [34, 35, 40, 44]. Of these, the RaPiD architecture [44] was specifically designed

for use in an SoC. RaPid contains a linear array of dedicated functional units connected

using dedicated buses. Control logic is implemented using a separate module that provides

control signals to the functional units.

RaPiD is intended to support fairly large applications such as image and signal processing,

and may be best implemented as a hard programmable logic core. It would be possible to

“scale down” RaPiD and use it as a synthesisable core. However, like the datapath FPGAs

described in the previous section, the unprogrammed RaPiD fabric contains combinational

loops. Our architecture eliminates these using a directional routing network.

Another difference between RaPiD and our architecture is that RaPiD (as well as many

coarse-grained architectures) contains a heterogeneous mix of fixed-function datapath ele-

ments rather than configurable wordblocks. When creating a RaPiD fabric, one must choose

how many of each type of functional unit is to be included in the fabric. However, once

that decision is made, the location of each functional unit does not matter, since buses can

be routed from any functional unit to any other functional unit. In our architecture, how-

ever, the routing network requires less area but is less flexible, so it is less likely that a

pre-positioned set of fixed functional units could be connected to implement a target appli-

cation. Thus, we provide a general-purpose wordblock that can be used to implement many

functions. The only exceptions to this rule are the embedded multiplier blocks; we distribute

these evenly across the fabric to maximise the likelihood that applications can be mapped

successfully.

4.7 Summary

We have presented an architecture for a datapath-oriented synthesisable FPGA core which

can be used to provide a flexible coarse-grained block on existing island-style FPGA devices.

51

The proposed architecture features with sharing configuration bits, carry chains, directional

routing architecture and embedded multipliers. Compared to the previous best synthesisable

embedded programmable logic core, our architecture is between 6 times and 426 times more

area efficient, depending on the number of embedded multipliers in the fabric. This opens the

use of synthesisable embedded programmable logic cores to significantly larger applications,

and provides a configuration overhead similar to that of standard hand-designed FPGAs.

52

Chapter 5

Hybrid Floating Point FPGA

5.1 Introduction

By employing the methodology presented in Chapter 3 and 4, we propose domain-specific

coarse-grained architectures which can have advantages in speed, density and power over

more conventional heterogeneous FPGAs. One key issue associated with such an approach

lies in identifying the correct amount of coarse-grained logic necessary to enhance the per-

formance of an application without adversely affecting area and flexibility. For example,

an application that demands high performance floating point computation can potentially

achieve better speed and density by introducing dedicated embedded floating point units

(FPUs). However, for those applications which do not have any floating point computa-

tions, the FPU resources will be wasted. To address this issue, we advocate domain-specific

FPGAs with flexible, parameterised architectures that can be generated to address applica-

tion sets that are smaller than those targeted by conventional FPGAs, but possibly larger

than that of ASICs.

We introduce a hybrid FPGA model in which both fine-grained and coarse-grained units

are considered important. Given a domain-specific application requirement, a reconfigurable

fabric consisting of both types of units is generated, the coarse-grained units being used for

the datapath and fine-grained units for control and bit-oriented operations. A model is also

53

introduced that allows us to search for the best proportion of each type of fabric, and a

method for rapidly evaluating the performance of the architecture is employed.

Initial experiments on the proposed generation framework shows promising results. A

hybrid FPGA device which is optimised for floating point computations can achieve 2.4

times improvement in speed and 19 times reduction in area on average when compared with

traditional FPGA devices on the benchmark circuits introduced in Section 2.5.

5.2 Generic domain-specific hybrid FPGA

In this section, a generic hybrid FPGA architecture is discussed with examples from different

application domains. Issues and challenges associated with this architecture are mentioned,

and a hybrid FPGA for floating point calculation will be introduced in Section 4. Compared

with purely coarse-grained devices, having fine-grained units in the fabric serves to enhance

flexibility.

A hybrid FPGA architecture for digital signal processing (DSP) applications may have

the following types of reconfigurable blocks:

• Fixed-function blocks for Fast Fourier Transform (FFT) computation.

• Coarse-grained blocks for fused multiply-and-add operations.

• LUT-based fine-grained blocks to implement bit level operations and state machines.

The above example shows three levels of granularity. The interconnection of these blocks

can be optimised based on the nature of DSP applications. For example, the routing be-

tween blocks can be directional to avoid tristate buffers; buses can be used; and a single

configuration bit can be used to control multiple wires on the bus.

Hybrid FPGA based domain-specific architectures can also be developed for network-

ing applications, with various coarse-grained units being devoted to packet/payload/header

processing and fine-grained units used for implementing state machines. Routing between

blocks could be either bus-based or packet-oriented.

54

Although a hybrid architecture may improve the overall performance of a domain-specific

application, there are challenges and issues that have to be addressed in order to employ

this architecture effectively. These include:

• The architecture and granularity of the fabric. Given domain-specific information,

how to decide the architecture of a coarse-grained element, and how many levels of

granularity should be supported?

• The proportion of each type of fabric. Assuming there are coarse-grained and fine-

grained units, what proportion of these units is required so that the device is specialised

while flexible enough to accommodate different applications in that domain?

• The interconnection between different fabric. The routing between fabric can be bit-

oriented or bus-oriented. Should it be bidirectional or single direction? Which topology

can best provide efficient communication between each fabric?

• The design flow. As block with different granularity are available, traditional hard-

ware description language (HDL) based design flows may not be suitable for a hybrid

FPGA. We need tools which can choose the best-fit fabric for a given computation,

and partition the computation between fine-grained and coarse-grained structures.

In this work, we focus on hybrid FPGA architectures with multiple granularity, and use

floating point computations as a case study. The requirements of such an FPGA is discussed

in the next section.

5.3 Floating point hybrid FPGA architecture

5.3.1 Requirements

Before we describe the floating point hybrid FPGA architecture, common characteristics

of what we consider a reasonably large class of floating point applications which might be

suitable for signal processing, linear algebra and simulation is first described. Although the

55

following analysis is qualitative, it is possible to develop the hybrid model in a quantitative

fashion by profiling application circuits in a specific domain.

In general, FPGA based floating point application circuits can be divided into control and

datapath circuits. The datapath occupies most of the area in the form of FPUs. The required

processing mainly consists of addition, subtraction and multiplication. Occasionally, square

root and division may be required. Floating point adders and multipliers consume a lot of

FPGA resources. For instance, a single precision floating point adder requires 297 slices on

a Xilinx Virtex 4 device, while a single precision floating point multiplier requires 350 slices

on the same device [60]. Although the number of slices can be reduced to 233 and 118

respectively by implementing part of the logic in DSP48s for Xilinx Virtex 4 devices, such

an implementation is still expensive as the number of DSP48s is limited.

The floating point precision is usually a constant within an application. The IEEE 754

standard is an overwhelming first choice, especially the single precision format (32-bit) or

double precision format (64-bit). The interconnection can be bus-oriented.

The datapath can often be pipelined and datapath route uni-direction in nature. Occa-

sionally there is feedback in the datapath for some operations such as accumulation. The

control circuit is much simpler than the datapath and therefore the area consumption is

lower. Control is usually implemented as a finite state machine and most synthesis tools

can produce efficient mapping from the boolean logic of the state machine into fine-grained

FPGA resources.

Based on the above analysis, the following presents some basic requirements for floating

point hybrid FPGA architectures.

• A number of coarse-grained floating point addition and multiplication blocks are neces-

sary since most computations are based on these primitive operations. Floating point

division and square root operators can be optional, depending on the domain-specific

requirement.

• Coarse-grained interconnection, fabric and bus-based operations are required to allow

efficient implementation and connection between fixed-function operators.

56

• Dedicated output registers for storing floating point values are required to support

pipelining.

• Fine-grained units and suitable interconnections are required to support implementa-

tion of state machines and bit-oriented operations. These fine-grained units should be

accessible by the coarse-grained units and vice versa.

5.3.2 Architecture

Figure 5.1 shows a top-level block diagram of our hybrid FPGA architecture. It employs an

island-style fine-grained FPGA structure with dedicated columns for coarse-grained units.

The architecture consists of two types of reconfigurable units: fine-grained and coarse-

grained, the coarse-grained part having embedded fixed-function floating point adders and

multipliers.

The top-level architecture is inspired by existing commercial FPGAs. However, the

proportion of coarse-grained blocks can be customised to meet design requirements. The

island-style fine-grained block is used to generate different control signals for the coarse-

grained units, and fine-grained interconnections such as connection boxes and switch matrices

are employed as interconnections.

LUT-based fine-grained units, similar to Xilinx Virtex II slices, are employed. These can

be configured to build state machines and to support bit-oriented operations. Since this is

a domain-specific FPGA dedicated to floating point computations, it is assumed that the

datapath for the floating point units is implemented on the coarse-grained logic.

The architecture of the coarse-grained units, inspired by previous work [51, 59], is shown

in Figure 5.2. It is parameterised to support different proportions of fine and coarse-grained

elements, the parameters being detailed in Table 5.1. There are D blocks in a unit, P of them

are floating multipliers, another P of them are floating point adders and the rest (D − 2P)

are wordblocks.

The floating point multiplier block is a fixed-function block. The floating point adder

block can be configured for either floating point addition or subtraction. This is achieved by

57

Symbol Parameter Description

D Number of blocks (Including FPUs, wordblocks)

N Bit Width

M Number of Input Buses

R Number of Output Buses

F Number of Feedback Paths

P Number of Floating Points Adder and Multipliers

Table 5.1: Architectural parameters for the coarse-grained unit.

XORing the sign bit with the configuration bit. Each FPU has a reconfigurable registered

output and associated control input and status output signals. The control signal is a write

enable that controls the output register. The status signals report the FPU’s status flags

and include those defined in IEEE standard as well as a zero and sign flag. The fine-grained

unit can monitor these flags as routing paths exist between them.i j k l m n o p j k l q r k j s t

u v p o t l m n o p j k l q r k j s t w j s xl y z l q q l q { | v p s j k n } v j k s r k j s t
Figure 5.1: Top-level architecture of floating point hybrid FPGA.

A wordblock contains N identical bitblocks, and is similar to published designs [59]. A

bitblock contains two 4-input LUTs and a reconfigurable output register. The value of N

depends on the size of the FPU. Bitblocks within a wordblock are all controlled by the same

58

~ � � � � � � �
� � � � � � � � � � � � �

� �~ � �� � � � �
� � � � � � � � � � � � �

~ � � � � � �� �
� �� �� �� �� �� �� �� � � �� � � � � � � � � � � � � � � � � � �� � �� � � � �� � � � � � ¡ ¢ � � � � � � £¤ � ¥ �� � � � � ¢ ¡ ¢ � � � � � � £� � �

� � � � � �� � � � � ¤ ¡
� � � � � � �

¦ � � � � � � § � ¥ � � � � � � � � § � � � � � ¢ � � ¥ � � � � � �¨ ©ª « ¬ ­ ® ¯° ª ­ ® ¬± ² ©¬ ­ ³ © ­´ µ ¨ ©ª « ¬ ­ ® ¯° ª ­® ¬ ¶ · · ´ µ ¸¹ ² º ¬ µ « » ¬ ª µ
� � � � � �

� �� �� �� �� �� �� �� � � �� � � � � � � � � � � � �
~ � �� �

Figure 5.2: Architecture of the coarse-grained unit.

set of configuration bits, so all bitblocks within a wordblock perform the same function. A

wordblock, which includes a register, can efficiently implement operations such as addition

and multiplexing. Similar to FPUs, wordblocks generate status flags such as MSB, LSB,

carry out, overflow and zero which are connected to the fine-grained blocks.

Apart from the control and status signals, there are M input buses and R output buses

connected to the fine-grained units. The routing layout assumes that a block can only

accept inputs from the left, simplifying the routing. To allow more flexibility, F feedback

registers have been employed so that a block can accept the output from the right block

through the feedback registers. For example, the first block can only accept input from

input buses and feedback registers, while the second block can accept input from input

buses, the feedback register and the first block. The feedback registers serve to latch the

output a block and forward to another block. The location of a floating point multiplier

is always logically located to the left of a floating point adder so that no feedback register

is required to support multiply-and-add operations. The coarse-grained units can support

multiply-accumulate functions by utilising the feedback registers.

Switches in the coarse-grained unit are implemented using multiplexers and are bus-

oriented. A single set of configuration bits is required to control these multiplexers, improving

59

density. For the same reason, the FPUs are embedded in the coarse-grained units rather

than distributed over the FPGA, such that an FPU can exploit the bus-oriented routing

resources in the coarse-grained blocks. This can significantly reduce area.

5.3.3 Design flow

As mentioned earlier, a traditional HDL-based design flow is not suitable for the floating point

hybrid FPGA, since a suitable partition between the different blocks must be made. A design

can be partitioned either from the low-level description or from a high-level description. A

methodology has been reported [61] which can extract coarse-grained logic from a netlist,

where the netlist is targeted for a fine-grained fabric. Although this method can locate

suitable logic to implement in a wordblock, it fails to recognise fixed-function logic such as

floating point operations, since their low level representation is usually irregular.

We propose a scheme to partition a given application from a high level description into

a reconfigurable fabric with multiple granularity. The general approach is illustrated in

Figure 5.3. Some key features of this scheme are:¼½ ¾¿ À ÁÂ ÃÄ Å Æ Ç ÈÉÊ
¿ Á Æ È

+ÄËÌÍÎÏÐÎË ÏÑÏÒÌÏ ÓÍÔÕÖ×ØÙÚØ ÙÛÜ ÝÞß àáâá×ã
äåæçèéêëåæçì íæåî

Äïðñòïó óïô¼ÄòÈÄïôð¼ñ¼ïð Æ¿ñ¿õ¿ñöòÈÄïôð¼ñ¼ïðãá÷ã øßùßøúß×ÝÚáûØáüâ
õöýþ¼Ä¿óÿ¿õõ¼ðô¾½¼ðÈ�ôò¿¼ðÈÆÂ õöýþ¼Ä¿óÿ¿õõ¼ðô¾Äï¿òþÈ�ôò¿¼ðÈÆÂ¿ Á Æ È � ÄÙÛÜ ÝÞßàáâá×ã×ØÙÚØ ÙÛÜ ÝÞß ��ëê�çèéêëåæçì íæåî �åî� ç��çììçì �	��
�

��Î
Ö�Ð �ÐÔÐÎ �ÔÏÖÌ�Î
Figure 5.3: A general scheme of hybrid FPGA deign flow.

• Each fixed-function block represents a built-in function or operator in the high level

60

description. A fixed-function block is instantiated when the function or operator is

called.

• Data dependence information can be extracted from the high level description to pro-

duce a directed cyclic graph. This graph represents a datapath and it can be mapped

to coarse-grained units.

• Control statements such as “if”, “while”, “for” and control for the execution sequence

can be translated to a one-hot state machine [62].

This scheme can be implemented on top of most available high level descriptions for

digital design such as Handel-C and ASC [63]. We have modified a high level compilation

tool called fly [64] to support the floating point hybrid FPGA architecture. The fly compiler

has the following features:

• There are dedicated operators for floating point computations such as “.+”, “.–” and

“.*”, which map to FPUs in the coarse-grained blocks.

• All variables starting with the letter ”f” indicate a bus-oriented signal and will map to

the wordblocks in the coarse-grained FPGA fabric.

• All control logic such as loop and conditional statements will be implemented as random

logic, and the compiler maps them to the logic cells in the fine-grained FPGA fabric.

• It produces one-hot state machines which can be implemented efficiently on fine-grained

units.

There are certain issues in the fly compiler that currently prohibit us from producing

a bitstream from the high level description. The major issue is that it cannot partition

directed cyclic graphs efficiently in the case of multiple coarse-grained blocks. In addition,

the fly compiler is not aware of some architectural parameters such as the number of feedback

registers. Hence designs for the hybrid FPGA are currently partitioned manually.

61

5.4 Modelling of a hybrid FPGA

A methodology, building on our earlier work [56, 59], is used to model floating point hybrid

FPGAs with different architectural parameters and coarse-grained blocks, as described in

Section 5.3.2. This methodology is general and can be used to model any FPGA provided

that a floorplanner and a timing analysing tool are available for that device. In this method-

ology, an existing fine-grained commercial FPGA is used. Fine-grained blocks in our hybrid

FPGA are directly mapped to the corresponding logic cells on the commercial FPGA.

The area and delay for the embedded coarse-grained units are first estimated by synthe-

sising the design using a standard cell flow. They are then modelled in a commercial FPGA

by employing blocks of logic cells with similar delay and area. The corresponding vendor’s

CAD tools are then used to estimate the delay and area of the hybrid FPGA.

5.4.1 Soft-core embedded floating point units

We employ a parameterised synthesisable IEEE 754 compliant floating point library in our

experiments. The library supports four rounding modes and denormalised number. A float-

ing point multiplier and floating point adder are generated and synthesised using a standard

cell library design flow. The target process is 130nm and the Synopsys Design Compiler

is used for synthesis. During synthesis, retiming optimisation is enabled to obtain better

results. Table 5.2 shows the synthesis results for both single precision and double precision

standards. It should be noted that there is potential improvement of the core in both the

timing and density by adopting full-custom design.

5.4.2 Synthesisable coarse-grained units

To allow parameterised coarse-grained units, we employ a synthesisable flow which supports

different granularities. To determine suitable parameters for generation of coarse-grained

units, we first decide on an initial set of parameters and try to map a set of benchmark

circuits to the units. Two parameters determine whether the architecture is best-fit. The

62

FP unit Latency Area Period Frequency

(clock cycle) (µm2) (ns) (MHz)

SP adder 5 45,147 2.23 448.4

SP multiplier 5 93,184 3.05 327.8

DP adder 5 104,606 2.61 383.1

DP multiplier 5 252,241 5.47 182.8

Table 5.2: Timing and area of embedded floating point units. SP stands for single precision

and DP stands for double precision.

first is the number of coarse-grained units required to implement the circuit. The second is

the percentage of blocks used in a unit.

The best-fit architecture can be determined by varying the parameters to produce a

design with the least number of units with maximum density on the benchmark circuits.

Surplus wordblocks are added to the design, allowing more flexibility for implementing other

circuits outside of the benchmark set. Currently, the fly compiler is unable to produce very

efficient physical mappings, so manual mappings are made for the benchmarks. Once the

parameters are determined, a Verilog netlist is generated and synthesised together with soft-

core FPUs using the Synopsys Design Compiler for the 130nm process. Area information

can be obtained from the tool directly. Timing information, however, cannot be determined

before programming the configuration bits.

During manual mapping, a set of configurations is generated and can be used in timing

analysis. We use the case analysis feature provided in the Synopsys Design Compiler which

takes configuration bits into account in the timing analysis.

The architectural parameters: 9 blocks (D = 9), 4 input buses (M = 4), 3 output buses

(R = 3), 3 feedback registers (F = 3), 2 floating point adders and 2 floating point multipliers

(P = 2) are determined empirically by trial-and-error as explained above. We generate both

single and double precision coarse-grained fabrics with bitwidths (N) 32 and 64 respectively.

63

5.4.3 Integration with fine-grained units

LUT-based fine-grained units are mature in terms of architecture and design flow. They

have been widely adopted in commercial FPGAs. We have employed a methodology called

virtual embedded blocks (VEB) [56] to model fine-grained units in our architecture. The

VEB flow allows the evaluation of embedded elements on FPGA devices by creating dummy

logic cells.

������������ ���� � � � � � !"# $% &' ()(*+*,!-, !"# $% & ./��0��������� ���� 1��2 �34����� 45/.607-8$&** 9$:;< #&= ()(' 9$:; > ?@A !)B $:;A&C&),A<,+&)*,!-, D> ' ()(*+E &)B (' E&)B 7-8$&**E$% & D> *,!-, !)B !F=&F #EGHI $8!-*&F=-! ()&BFJ)(,78-, K!79$:;L !F=&F#L $% &L MMM<E
NOPO�Q RSTUSVW

NOPXY WUZ�QSQ[SW�\]R�SW�� W�U^SQU
__`_`_`_``aaaaa�SUQUR��b]�W�R�USVW V�RQ�\]R�SW�� cX debV�� ^f SbSW] gV��f̂ SbSW]c W� ^YQ SQ c R�� gV�� ^h ij W�U^SQUh ijeVbTS^�USVWf�R]�U [klcO�m S �Qf SbSW] �W� c R�� VnNY �RS� [klc h�W�VR\XT� Sn S k^� � �W� oVpU�

Figure 5.4: Integration of fine-grained and coarse-grained units.

Figure 5.4 illustrates the integration of synthesisable coarse-grained units and fine-grained

units on a Virtex II device. This methodology is not limited to any particular device or

vendor, and can be used for most commercial FPGA devices. We start the first step with

fine-grained logic which is described in HDL. The HDL description also contains additional

statements which instantiate the coarse-grained units explicitly, and signals between the fine-

grained and coarse-grained units are mapped to appropriate routing resources. The design is

then synthesised on the target device and a device specific netlist is generated. The synthesis

tool considers the coarse-grained unit as a black box. The area utilisation is computed by

determining the corresponding number of slices in Virtex II [65].

64

The second step is to obtain the timing and area model for each instantiated coarse-

grained unit as described in Section 5.4.2. With this information, a VEB netlist can be

compiled by generating dummy cells with appropriate area and delay. Special consideration

is given to the interface between fine-grained units and coarse-grained units to make sure

that the corresponding VEB model has sufficient I/O pins to connect to the fine-grained

routing resources. This can be verified by keeping track of the number of inputs and outputs

which connect to the global routing resources in a slice. For example, it is not possible to

have a VEB model which has area of 4 slices but demands 33 inputs and 9 outputs, as we

assume one slice in Virtex II can only support 8 inputs and 2 outputs. Also, as we cannot

route the configuration clock and configuration input pin to a coarse-grained unit, there are

two programming pins connected to the I/O of the host FPGA which act as the configuration

port for the coarse-grained unit.

After generating the VEB netlist for the targeted FPGA, a constraint file which forces

the VEB located on the same column is specified. We then use the vendor’s place and route

tool to obtain the final area and timing results. This represents the characterisation of a

circuit implemented on the hybrid floating point FPGA with fine-grained units and routing

resources exactly the same as the targeted FPGA.

Using commercial FPGA fine-grained units in this manner has several advantages, since

commercial quality synthesis and place and route tools can be in the modelling of the hybrid

FPGA. It can produce a more realistic comparison to existing FPGA devices. Furthermore,

optimisations such as retiming are available. We avoid redesigning the fine-grained unit, so

adopting a rapid evaluation approach based on existing commercial fine-grained units.

5.5 Results

A set of benchmark applications are mapped to the floating point hybrid FPGA, and the

results are compared to a Virtex II device. This Section introduces the circuits and gives an

example of mapping one of the circuits. Both single precision and double precision floating

point hybrid FPGA are assessed. A floorplan of one of the example mappings on the hybrid

65

FPGA is given in Figure 5.6. All FPGA results are obtained using the Synplicity Synplify

Premier 8.5 to synthesis and Xilinx ISE 8.1i design tools to place and route. All ASIC results

are obtained using Synopsys Design Compiler V-2004.06.

Six benchmark circuits are used in this study as mentioned in Section 2.5 All the examples

assume the two floating point multipliers are located at the second and the sixth block. The

two floating point adders are located in the third and the seventh block. All other parameters

are given in Section 5.4.2.

5.5.1 Example mapping

qrst qrsuqrsvqrsw xyz{|}~���~�������� ��� �������� ��
����� ��� �������� ����������������������������

����
���� ����� ����������� ~��������� �¡¢ ¡£¡¤ ¡¥ ¡¦x§¡¨

(a) Fine-grained unit mapping.

©ª «¬­®¯ ° ©±² ³´µ ³ ´¶ ©±·¬­® ¯°¸¹¸º »¼©ª½¬­® ¯ °¸ ¼¸¾³ ´¿ ³´À ³´Á
©ª «¬­®¯ ° ©± ² ³´µ ³´¶ ©±·¬­® ¯°¸Â »ÃÄÅ ÆÇ³ ´¿ ³´À ³´Á»¼¸È ©ª½¬­® ¯°¹ É¹
(b) Coarse-grained unit mapping.

Figure 5.5: Example mapping for matrix multiplication.

Figure 5.5 illustrates a manual mapping example for the matrix multiplication. The

mapping process splits the circuit into a control unit and datapath, and they are respectively

mapped to the fine-grained units and coarse-grained units. A state machine is implemented

using the fine-grained units which generate address and write enable signals for the block

RAM. The output of the block RAM connects to either registers or coarse-grained blocks,

according to the timing requirement of the datapath. Registers are added to match the

latency so that all multiplications take place in the same clock cycle.

Two coarse-grained units are instantiated. The first coarse-grained unit performs two

multiplications and one addition. The result (r1) is forwarded to the next coarse-grained

66

unit. The second coarse-grained unit performs one multiplication and one addition. However,

as all multiplications start in the same clock cycle, the last addition cannot start until r1 is

ready. In order to synchronise the arrival time of r1 and d4×d5, another floating point adder

(FA2) in the second coarse-grained block is instantiated as a FIFO with exactly the same

latency as the one in the first coarse-grained block. This demonstrates an alternative use

of a coarse-grained unit. Finally r1 and d4×d5 are added together and the state machine

fetches the result to the block RAM. All FPUs have enabled registered output to further

pipeline the datapath.

5.5.2 Comparison with existing FPGA devices

In this paper, we choose the Virtex II device as the host FPGA for the floating point

hybrid FPGA and comparisons are made between them. This is because Virtex II employs

a comparable technology process (0.15µm/0.12µm) and its fine-grained units and routing

resources can efficiently implement random logic.

The physical die area of a Virtex II device has been reported [65], and the normalisation

of the area of coarse-grained unit is estimated in Table 5.3. We assume that 60% of the

total die area is used for slices. Others are for I/O pads, block memory, multiplier etc.

This means that the area of a Virtex II device is 10,912µm2. This number is normalised

against the feature size (0.15µm). A similar calculation is used for the coarse-grained units.

The area of a single precision coarse-grained unit is 567,146µm2 and the area of a double

precision coarse-grained unit is 1,256,570µm2 are reported by the synthesis tool. We further

assume 15% overhead after place and route the design based on our experience [59]. The

area values are normalised against the feature size (0.13µm). The number of equivalent

slices is obtained through the division of coarse-grained unit area by slice area. This shows

that single precision coarse-grained unit is equivalent to 80 slices and our double precision

coarse-grained unit is equivalent to 177 slices. On checking the input/output requirements,

we find that the single precision coarse-grained unit cannot fit into 80 slices as it requires

162 outputs. Therefore, the number of slices of the fine-grained unit is increased to 81.

67

Although a Virtex II slice employs smaller transistors (0.12µm) than those used for

building the coarse-grained unit (0.13µm), we do not scale the timing of the coarse-grained

unit and therefore conservative timing results are reported.

Fabric Area (A) Feature Size Normalised Area Input Pin Output Pin

(µm2) (L) (µm) Area (A/L2) in Slices

Virtex II Slice 10,912 0.15 485,013 1 8(8) 2(2)

SP-CGU 567,146 0.13 38,592,775 80 157 (316) 162(160)

DP-CGU 1,256,570 0.13 85,506,242 176 285 (704) 258(352)

Table 5.3: Normalisation on the area of the coarse-grained units against a Virtex II slice.

The values in the sixth and seventh columns represent the number of I/O required. The

values in brackets indicate the maximum number of I/O allowed for the area in slices. SP

and DP stand for single and double precision respectively. CGU stands for coarse-grained

unit.

We use XC2V1000-6-FF896 as the host-FPGA for the floating point hybrid FPGA. There

are 12 single precision coarse-grained blocks, embedded into this FPGA using VEB flow. The

coarse-grained blocks constitute 19% of the total area in an XC2V1000 device. The VEB

result is generated according to Section 5.4.2. Benchmark circuits are implemented on the

same device and the results are shown in Table 5.4a. A sample floorplan of the bgm circuit

implemented on a hybrid FPGA is illustrated in Figure 5.6.

The FPU values for the XC2V1000 device (seventh column) are estimated from the

distribution of LUTs, which is reported by the synthesis tool. The logic area (eighth column)

is obtained by subtracting the FPU area from the total area reported by the place and route

tool. As expected, FPU logic occupies most of the area, typically more than 90% of the user

circuits. Although the bfly circuit cannot fit in a XC2V1000 device, it can be tightly packed

into a few coarse-grained blocks. For example, the circuit bfly has 8 FPUs which consume

129% of the total FPGA area. They can fit into 2 coarse-grained units, which constitute

just 3.2% of the total FPGA area. Delay is reduced by 2.4 times on average. As the critical

68

Figure 5.6: Floorplan of the bgm circuit on a hybrid FPGA. A coarse-grained unit is identified

by tightly packed slices in a rectangular region.

paths are in the FPU, improving the timing of the FPU through full-custom design would

further increase the overall performance.

Table 5.4b gives the implementation results for double precision floating point circuits.

The hybrid FPGA is compared with an XC2V3000-6-FF1152 device. Similar reduction

in area is found and delay reduction is slightly better than the single precision versions.

The geometric means for reduction in area and in delay of all the circuits are 19 and 2.4

respectively.

It is possible to allow more flexibility by replacing coarse-grained units with fine-grained

ones. As an example, the fir4 circuit requires 2 coarse-grained units and 4 slices. However,

it can also be implemented using 1 coarse-grained unit and 1324 slices, while the delay is

increased from 4.8ns to 10.2ns. This configuration allows us to implement the equation
√

x2 + y2 + z2 which consists of 3 multipliers, 2 adders and a square root. Two additions

and two multiplications can be implemented on a coarse-grained units, while another mul-

tiplication and the square root operation can be implemented on fine-grained units. The

resulting circuit requires one coarse-grained unit and 1311 slices and the delay is 11.42ns.

The alternative, with two coarse-grained units and 732 slices, has delay of 5.21ns.

69

Single precision floating point hybrid FPGA XC2V1000-6-FF896 Reduction

Circuit CGU area FGU area Total Area Delay FPU area Logic area Total Area Delay Area Delay

(slices) (slices) (slices) (ns) (slices) (slices) (slices) (ns) (times) (times)

bfly∗ 162 (3.2%) 102 (1.99%) 264 (5.2%) 5.54 6,615 (129%) 560 (11%) 7,175 (140%) 12.76 27.2 2.30

dscg 162 (3.2%) 147 (2.87%) 309 (6.0%) 4.72 4,548 (89%) 209 (4%) 4,757 (93%) 11.47 15.4 2.43

fir4 162 (3.2%) 4 (0.08%) 166 (3.2%) 4.80 4,736 (93%) 102 (2%) 4,838 (94%) 13.74 29.1 2.86

mm3 162 (3.2%) 131 (2.56%) 293 (5.7%) 5.09 4,017 (78%) 507 (10%) 4,524 (88%) 11.63 15.4 2.28

ode 162 (3.2%) 32 (0.63%) 194 (3.8%) 5.29 3,709 (72%) 159 (3%) 3,868 (76%) 10.73 19.9 2.03

bgm∗ 567 (11.1%) 368 (7.19%) 935 (18.3%) 7.40 13,801 (270%) 257(5%) 14,058(275%) 13.42 15.0 1.81

Geometric Mean: 19.6 2.26

(a) Single Precision Floating Point hybrid FPGA Result. Values in brackets indicate the percentages of slices

used in a XC2V1000 device. ∗Circuit bfly cannot be fitted in a XC2V1000 device. The area and the delay

are obtained by implementing on a XC2V1500 device. Similar case applies to bgm circuit and the results are

obtained by implementing on a XC2V3000 device.

Double precision floating point hybrid FPGA XC2V3000-6-FF1152 Reduction

Circuit CGU area FGU area Total Area Delay FPU area Logic area Total Area Delay Area Delay

(slices) (slices) (slices) (ns) (slices) (slices) (slices) (ns) (times) (times)

bfly 352 (2.5%) 213 (1.49%) 565 (3.9%) 9.02 12,813 (89%) 920 (6%) 13,733 (96%) 24.57 24.3 2.72

dscg 352 (2.5%) 309 (2.16%) 661 (4.6%) 10.11 9,287 (65%) 327 (2%) 9,614 (67%) 22.78 14.5 2.25

fir4 352 (2.5%) 19 (0.13%) 371 (2.6%) 9.06 11,143 (78%) 147 (1%) 11,290 (79%) 23.68 30.4 2.61

mm3 352 (2.5%) 290 (2.02%) 642 (4.5%) 8.9 8,071 (56%) 818 (6%) 8,889 (62%) 23.40 13.8 2.63

ode 352 (2.5%) 193 (1.35%) 545 (3.8%) 9.74 7,933 (55%) 305 (2%) 8,238 (57%) 21.93 15.1 2.25

bgm∗ 1232 (8.6%) 578 (4.03%) 1,810 (12.6%) 10.00 29,758 (208%) 539(4%) 30,207 (211%) 24.34 16.7 2.43

Geometric Mean: 18.3 2.48

(b) Double precision floating point hybrid FPGA results. Values in the bracket indicate the percentages of slices

used in a XC2V3000 device. ∗Circuit bgm cannot be fitted in a XC2V3000 device. The area and the delay are

obtained by implementing on a XC2V6000 device.

Table 5.4: Floating point hybrid FPGA results. CGU stands for coarse-grained unit and

FGU stands for fine-grained unit.

5.5.3 Comparison with previous work

Modelling of embedded FPUs based on island-style FPGAs has been reported [53, 56] and

the improvements observed are summarised in Table 5.5. This work adopts a more generic

model in which a number of FPUs and LUTs form a coarse-grained unit to allow higher

density and better speed. In addition, FPUs and LUTs are connected by reconfigurable

bus-based routing to allow efficient datapath logic mapping. Area saving is given by (1) an

improved coarse-grained unit, (2) efficient directional routing, (3) sharing configuration bits

and (4) reduced functionality FPUs. The methodology, benchmarks, tools and assumed

architecture of our approach compared with [53] are very different and a direct comparison

70

Architecture FPGA FPU Area Delay

Model Model Saving Reduced

(times) (times)

[53] VPR full-custom 2.2 1.4

(Pentium 4)

[56] VEB full-custom 3.7 4.4

(Blue Gene)

This work VEB synthesisable 19 2.4

Table 5.5: Comparison to previous work. Area saving and delay reduced are compared to a

FPGA device with embedded multiplier.

cannot be made.

As similar circuits are used in [56], a more detailed analysis is performed. Table 5.6

presents the area distribution and the reported delay between this work and [56]. One

significant reduction is the size of FPU. In [56], a full FPU which could perform not only

addition and multiplication, but also division, square root and integer to floating point

conversion is employed. In this version, the FPU can only perform addition or multiplication.

Another significant reduction lies in the improved functionality of the coarse-grained unit

which can implement bus-based logic, buffering and multiplexing operations. For [56], such

logic is implemented using fine-grained resources. The delay reported in [56] is better than

this work because of the full-custom FPU. In addition, the latency in [56] is one clock cycle

which can give better performance for some applications.

5.6 Summary

This chapter demonstrates the feasibility of developing automated tools for producing hybrid

FPGAs that are tuned to specialised classes of problems. A generic architecture is given,

together with a specific example involving an FPGA optimised for floating point computa-

71

This work Embedded FPU

CGU FGU Delay FPU FGU Delay

area area area area

(slices) (slices) (ns) (slices) (slices) (ns)

bfly 352 213 9.02 2,280 1,712 8.82

dscg 352 309 10.11 1,710 470 8.81

fir4 352 19 9.06 1,995 498 9.54

mm3 352 290 8.90 1,425 1,195 8.59

ode 352 193 9.74 1,425 435 8.53

Table 5.6: Comparison to previous embedded FPU model [56] for double precision floating

point benchmarks.

tions. We show that the proposed floating point hybrid FPGA enjoys improved speed and

density over a conventional FPGA for a variety of applications.

72

Chapter 6

Conclusion and Future Work

This report discusses FPGA devices optimised for floating point computations. The objective

and the requirements of the research is covered in Chapter 1. A comprehensive literature

review is illustrated by Chapter 2, which covers different aspect of this project, including

FPGA architecture, FPGA modelling, CAD tools, floating point computations. Different

FPGA models are presented in Chapter 3 and 4. The models provide a potential automated

framework to search for an optimised floating point FPGA architecture. Chapter 5 integrates

previous work and proposes an initial floating point FPGA architecture which consists of

coarse-grained units and fine-grained units. The architecture can deliver promising results

on a set of selected floating point benchmark circuits.

Plenty of future work can be done to finalise the project. The goal is to automate

the floating point FPGA design process by profiling user applications. The tasks include

(1) automatic synthesis tools which translate high level description into bitstream, (2) more

floating point benchmark circuits to evaluate the floating point FPGA design, as well as (3) a

search algorithm which produces an FPGA architecture by providing examples of floating

point applications. To achieve (1), we will extend the current fly compiler, as described in

Section 5.3.3. More complex floating point computations such as LU decomposition, 64-point

FFT and BLAS will be implemented on the floating point FPGA. Different search algorithms,

including those in [50], will be considered to identify suitable architectural parameters.

73

The thesis outline is illustrated below. Italic text in the outline represents the current

progress.

Chapter 1 Introduction

Chapter 2 Related Work

(Update content, estimated completion date: DEC-2007 – MAR-2008)

Section 2.1 FPGA architecture

Section 2.2 FPGA design tools

Section 2.3 Floating point application

Section 2.4 Floating point units

Section 2.5 Benchmark circuits

Section 2.6 Summary

Chapter 3 Virtual Embedded Block

(Most of the content completed, as illustrated in Chapter 3 of this report)

Section 3.1 Methodology: generic aspects

Section 3.2 Methodology: vendor specific aspects

Section 3.3 Results

Section 3.4 Summary

Chapter 4 Synthesisable Datapath FPGA Fabric

(Most of the content completed, as illustrated in Chapter 4 of this report)

Section 4.1 Architecture

Section 4.2 Example mapping

Section 4.3 Parameter optimisation

Section 4.4 Mapping results

Section 4.5 Proof-of-concept layout

Section 4.6 Comparison to previous work

Section 4.7 Summary

Chapter 5 Hybrid Floating Point FPGA

(Most of the content completed, as illustrated in Chapter 5 of this report)

74

Section 5.1 Generic domain-specific hybrid FPGA

Section 5.2 Floating point hybrid FPGA architecture

Section 5.3 Modelling a hybrid FPGA

Section 5.4 Results

Section 5.5 Summary

Chapter 6 Synthesis flow of hybrid FPGA

(Future work, estimated completion date: AUG-2007 – NOV-2007)

Section 6.1 High level description of floating point circuit

Section 6.2 Language support

Section 6.3 Synthesis algorithm

Section 6.4 Implementation

Section 6.5 Results

Section 6.6 Summary

Chapter 7 Automatic Floating Point FPGA Generation

(Future work, estimated completion date: APR-2008 – JUN-2008)

Section 7.1 Application profiling

Section 7.2 Search algorithm

Section 7.3 Implementation

Section 7.4 Results

Section 7.5 Summary

Chapter 8 Conclusion

Starting at early February, I plan to have an internship at Xilinx Inc for 6 months to

learn the most state-of-the-art technology from the industry. This can definitely improve my

current proposed FPGA architecture model. After the internship, my research plan in next

18 month is listed below:

• AUG-2007 – NOV-2007: Develop high level synthesis algorithm for the hybrid

FPGA architecture. This task will contribute to the Chapter 6 of the thesis.

• DEC-2007 – MAR-2008: Implement more complex floating point applications, in-

75

cluding LU decomposition, principal components analysis and so on. This task will

contribute to the Chapter 2 of the thesis.

• APR-2008 – JUN-2008: Develop an automatic hybrid FPGA architecture genera-

tion algorithm. This task will contribute to the Chapter 7 of the thesis.

• JUL-2008 – NOV-2008: Collect all the results and thesis write up.

76

Bibliography

[1] A. Gara et. al, “Overview of the Blue Gene/L system architecture”. In IBM J. Res & Dev.,

Volume 49, No. 2/3, pp. 195–212, March/May, 2005.

[2] “TOP500 List of World’s Fastest Supercomputers”. In

http://www.top500.org/news/articles/article 68.php, June, 2005.

[3] K.D. Underwood and K.S. Hemmert, “Closing the gap: CPU and FPGA trends in sustainable

floating point BLAS performance”. In Proc. FCCM, pp. 219–228, 2004.

[4] Y. Dou, S. Vassiliadis, G.K. Kuzmanov, and G.N. Gaydadjiev, “64-bit floating-point FPGA

matrix multiplication”. In Proc. FPGA, pp. 86–95, 2005.

[5] A. Jaenicke and W. Luk, “Parameterised floating-point arithmetic on FPGAs”. In Proc. IEEE

Int. Conf. on Acoust., Speech and Signal Process, pp. 897–900, May 2001.

[6] Pavlé Belanovic and Miriam Lesser. A Library of Parameterized Floating-point Modules and

Their Use. In Field Programmable Logic and Application. Reconfigurable Computing Is Going

Mainstream, pages 657–666. Springer-Verlag Heidelberg, Sept 2002.

[7] C.H. Ho, M.P. Leong, P.H.W. Leong, J. Becker and M. Glesner, “Rapid Prototyping of FPGA

based Floating-point DSP Systems”, In Proceedings of Rapid System Prototyping, pp. 19–24,

2002.

[8] G.L. Zhang, P.H.W. Leong, C.H. Ho, et. al, “Reconfigurable Acceleration for Monte Carlo

based Financial Simulation”. In Proc. FPT, pp. 215–222, Dec 2005.

77

[9] C.H. Ho, K.H. Tsoi, H.C. Yeung, Y.M. Lam, K.H. Lee, P.H.W. Leong, R. Ludewig, P. Zipf,

A.G. Ortiz, M. Glesner, “Arbitrary Function Approximation in HDLs with application to the

N-Body Problem”. In Proc. of Field Programmable Technology, pp. 84–91, 2003.

[10] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research”.

In Proc. FPL, pp. 213–222, 1997.

[11] C.H. Ho, P.H.W. Leong, K.H. Lee, K.H. Tsoi, R. Ludewig, P. Zipf, A.G. Ortiz and M. Glesner,

“fly - A Modifiable Hardware Compiler”. In Proceedings of Field Programmable Logic and

Applications, pp. 381–390, 2002.

[12] K.H. Tsoi, C.H. Ho, H.C. Yeung and P.H.W. Leong, “An Arithmetic Library and its Ap-

plication to the N-body Problem”. In Proceedings of Field-Programmable Custom Computing

Machines, pp. 68–78, 2004.

[13] J. Rose, “Hard vs. soft: The central question of pre-fabricated silicon,” in 34th International

Symposium on Multiple-Valued Logic (ISMVL’04), pp. 2–5, May 2004.

[14] K. Leijten-Nowak and J. L. van Meerbergen, “An FPGA architecture with enhanced datapath

functionality,” in Proc. FPGA ’03, ACM Press, 2003, pp. 195–204.

[15] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for Deep-Submicron FPGAs.

Kluwer Academic Publishers, 1999.

[16] M. Beauchamp, S. Hauck, K. Underwood, and K. Hemmert., “Embedded floating point units

in FPGAs,” in Proc. FPGA ’06, ACM Press, 2006.

[17] Saab Ericsson Space AB European Space Agency Contract Report, Application-like Ra-

diation Test of XTMR and FTMR Mitigation Techniques for Xilinx Virtex-II FPGA.

https://escies.org/public/radiation/esa/database/-ESA QCA0415S C.pdf, 2005.

[18] C. Yui, G. Swift, and C. Carmichael, “Single event upset susceptibility testing of the Xilinx

Virtex II FPGA,” in Military and Aerospace Applications of Programmable Logic Conference

(MAPLD), 2002.

[19] I. Page and W. Luk, Compiling Occam into FPGAs. Abingdon EE&CS Books, pp. 271–283,

1991.

78

[20] S. K. Mitra, Digital Signal Processing A Computer-Based Approach International Editions

1998. McGraw-Hill, pp. 339–416, 1998.

[21] J. Mathews and K. Fink, Numerical Methods Using MATLAB, 3rd ed. Prentice Hall, pp.

433–441, 1999.

[22] J. Hull, Options, futures and other derivatives, 5th ed. Prentice-Hall, 2002.

[23] G. Zhang, P. Leong, C. H. Ho, K. H. Tsoi, C. Cheung, D.-U. Lee, R. Cheung, and W. Luk,

“Reconfigurable acceleration for Monte Carlo based financial simulation,” in Proc. ICFPT,

pp. 215–222, 2005.

[24] R. Usselmann, Floating Point Unit.

http://www.opencores.org/project.cgi/web/fpu/overview, 2005.

[25] N. Y. ANSI/IEEE, IEEE Standard for Binary Floating-Point Arithmetic, The Insittution of

Electrical and Electronic Engineering, Inc, Tech. Rep., 1985, IEEE Std 754-1985.

[26] J. Hauser, TestFloat Release 2a General Documentation.

http://www.jhauser.us/arithmeic/testfloat.txt, 1998.

[27] S. Hsu, S. Mathew, M. Anders, B. Zeydel, V. Oklobdzija, R. Krishnamurthy, and S. Borkar,

“A 110 GOPS/W 16-bit multiplier and reconfigurable PLA loop in 90-nm CMOS,” IEEE

Journal of Solid State Circuits, pp. 256–264, 2006.

[28] J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits A Design Perspective.

Prentice-Hall, 2002.

[29] A. Bright et. al., “Blue Gene/L compute chip: synthesis, timing, and physical design,” IBM

J. Res & Dev., vol. 49, no. 2/3, pp. 277–287, March/May 2005.

[30] C. Wait, “IBM PowerPC 440 FPU with complex-arithmetic extensions,” IBM J. Res & Dev.,

vol. 49, no. 2/3, pp. 249–254, March/May 2005.

[31] K. Padalia, R. Fung, M. Bourgeault, A. Egier, and J. Rose, “Automatic transistor and physical

design of FPGA tiles from an architectural specification,” in Proc. FPGA ’03, ACM Press,

pp. 164–172, 2003.

79

[32] D. Chen, J. Cong, M. Ercegovac, and Z. Huang. Performance-driven mapping for CPLD

architectures. In ACM Int. Symp. on Field-Programmable Gate Arrays, pages 39–47, Feb.

2001.

[33] D. Cherepacha and D. Lewis. DP-FPGA: An FPGA architecture optimized for datapaths. In

Int. Conf. on VLSI Design, pages 329–343, 1996.

[34] D. Cronquist, P. Franklin, C. Fisher, M. Figueroa, and C. Ebeling. Architecture design of

reconfigurable pipelined datapaths. In Twentieth Anniversary Conf. on Advanced Research in

VLSI, page 23, 1999.

[35] S. Goldstein, H. Schmit, M. Budiu, S. Cadambi, M. Moe, and R. Taylor. Piperench: A

reconfigurable architecture and compiler. IEEE Computer, 33(4):70–77, April 2000.

[36] S. Hauck, T. Fry, M. Hosler, and J. Kao. The Chimera Reconfigurable functional unit. IEEE

Trans. on VLSI, 12(2):206–217, Feb. 2004.

[37] C. Ho, P. Leong, W. Luk, S. Wilton, and S. Lopez-Buedo. Virtual embedded blocks: A method-

ology for evaluating embedded elements in FPGAs. In Int. Symp. on Field-Programmable

Custom Computing Machines, pages 35–44, Apr. 2006.

[38] I. Kuon and J. Rose. Measuring the gap between FPGAs and ASICs. In Int. Symp. on

Field-Programmable Gate Arrays, pages 21–30, Feb. 2006.

[39] K. Leijten-Nowak and J. L. van Meerbergen. An FPGA architecture with enhanced datapath

functionality. In Int. Symp. on Field-Programmable Gate Arrays, pages 195–204, Feb. 2003.

[40] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B. Hutchings. A reconfigurable

arithmetic array for multimedia applications. In ACM Int. Symp. on Field-Programmable

Gate Arrays, pages 135–143, Feb. 1999.

[41] A. Menezes, P. van Oorschot, and S. Vanstone. Handbook of Applied Cryptography, pages

602–606. CRC Press, 1996.

[42] B. Quinton and S. Wilton. Post-silicon debug using programmable logic cores. In Int. Conf.

on Field-Programmable Technology, pages 241–247, Dec. 2005.

80

[43] R. Saleh, S. Wilton, S. Mirabbasi, A. Hu, M. Greenstreet, G. Lemieux, P. Pande, C. Grecu, and

A. Ivanov. System-on-chip: Reuse and integration. Proceedings of the IEEE, 94(6):1050–1069,

June 2006.

[44] H. Singh, M. Lee, G. Lu, F. Kurdahi, N. Bagherzadeh, and E. Chaves. Morphosys: An

integrated reconfigurable system for data-parallel and compute intensive applications. IEEE

Trans. on Computers, 49(5):465–481, April 2000.

[45] S. Wilton, N. Kafafi, J. Wu, K. Bozman, V. Aken’Ova, and R. Saleh. Design considerations for

soft embedded programmable logic cores. IEEE Journal of Solid-State Circuits, 40(2):485–497,

Feb. 2005.

[46] A. Yan and S. Wilton. Product-term based synthesizable embedded programmable logic cores.

IEEE Trans. on VLSI, 14(5):474–488, May 2006.

[47] A. Ye and J. Rose. Using bus-based connections to improve field-programmable gate array

density for implementing datapath circuits. In Int. Symp. on Field-Programmable Gate Arrays,

pages 3–13, Feb. 2005.

[48] A. Ye, J. Rose, and D. Lewis. Architecture of datapath-oriented coarse-grain logic and routing

for FPGAs. In IEEE Custom Integrated Circuits Conf., pages 61–64, Sept. 2003.

[49] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,” in Proc. FPGA. New

York, NY, USA: ACM Press, 2006, pp. 21–30.

[50] K. Compton and S. Hauck, “Totem: Custom Reconfigurable Array Generation,” in Proc.

FCCM, pp. 111–119, 2001.

[51] A. Ye and J. Rose, “Using Bus-Based Connections to Improve Field-Programmable Gate-Array

Density for Implementing Datapath Circuits,” IEEE Trans. VLSI, vol. 14, no. 5, pp. 462–473,

2006.

[52] E. Roesler and B. Nelson, “Novel Optimizations for Hardware Floating-Point Units in a Mod-

ern FPGA Architecture,” in Proc. FPL, 2002, pp. 637–646.

[53] M. Beauchamp, S. Hauck, K. Underwood, and K. Hemmert, “Embedded floating-point units

in FPGAs,” in Proc. FPGA, 2006, pp. 12–20.

81

[54] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool for FPGA Research,”

in Proc. FPL, 1997, pp. 213–222.

[55] A. Yan and S. Wilton, “Product-Term Based Synthesizable Embedded Programmable Logic

Core,” IEEE Trans. VLSI, vol. 14, no. 5, pp. 474–488, 2006.

[56] C. Ho, P. Leong, S. W. Luk, and S. Lopez-Buedo, “Virtual Embedded Blocks: A Methodology

for Evaluating Embedded Elements in FPGAs,” in Proc. FCCM, 2006, pp. 35–44.

[57] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size on Deep-Submicron FPGA

Performance and Density,” IEEE Trans. VLSI, vol. 12, no. 3, pp. 288–298, March 2004.

[58] B. Mei and S. Vernalde and D. Verkest and H.D. Man and R. Lauwereins, “ADRES: An Archi-

tecture with Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix,”

in Proc. FPL, 2003, pp. 61–70.

[59] S. Wilton, C. Ho, P. Leong, W. Luk, and B.Quinton, “A Synthesizable Datapath-Oriented

Embedded FPGA Fabric,” in Proc. FPGA, 2007 (in press).

[60] Xilinx Inc., Floating-Point Operator v1.0. Product Specification, 2005.

[61] A. Ye, J. Rose, and D. Lewis, “Synthesizing Datapath Circuits for FPGAs with Emphasis on

Area Minimization,” in Proc. ICFPT, 2002, pp. 219–226.

[62] I. Page, “Constructing hardware-software systems from a single description,” The Journal of

VLSI Signal Processing, vol. 12, no. 1, pp. 87–107, 1996.

[63] O. Mencer, “ASC: a stream compiler for computing with FPGAs,” IEEE Trans. CAD, vol. 25,

no. 9, pp. 1603–1617, 2006.

[64] C. Ho, P. Leong, K. H. Tsoi, R. Ludewig, P. Zipf, A. Ortiz, and M. Glesner, “Fly - a modifiable

hardware compiler,” in Proc. FPL. LNCS 2438, Springer, 2002, pp. 381–390.

[65] C. Yui, G. Swift, and C. Carmichael, “Single event upset susceptibility testing of the Xilinx

Virtex II FPGA,” in Military and Aerospace Applications of Programmable Logic Conference

(MAPLD), 2002.

[66] J. Hull, Options, futures and other derivatives, 5th ed. Prentice-Hall, 2002.

82

[67] A. Ye, J. Rose, and D. Lewis, “Architecture of datapath-oriented coarse-grain logic and routing

for FPGAs,” in CICC ’03: Proceedings of the IEEE Custom Integrated Circuits Conference,

pp.61–64, 2003.

[68] L. Beck, “A Place-and-Route Tool for Heterogeneous FPGAs”, in relax Distributed Mentor

Project Report, Cornell University, 2004.

[69] I. Kuan and J. Rose, “Measuring the Gap between FPGAs and ASICs”, in Proc. FPGA ’06,

ACM Press, pp. 21–30, 2006.

[70] V. Aken’Ova, G. Lemieux and R. Saleh, “An Improved ”Soft” eFPGA Design and Imple-

mentation Strategy”, in Proc. of IEEE Custom Integrated Circuits Conference, pp. 179–182,

2005.

[71] K. Compton and S. Hauck, “Flexibility Measurement of Domain-specific Reconfigurable Hard-

ware”, in Proc. FPGA ’04, ACM Press, pp. 155–161, 2004.

[72] K.H. Tsoi, C.H. Ho, H.C. Yeung and P.H.W. Leong, “An arithmetic library and its application

to the N-body problem”, in Proc. FCCM, pp 68–78, 2004.

[73] C.H. Ho, K.H. Tsoi, H.C. Yeung, Y.M. Lam, K.H. Lee, P.H.W. Leong, R. Ludewig, P. Zipf,

A.G. Ortiz and M. Glesner, “Arbitrary Function Approximation in HDLs wth Application to

the N-body Problem”

[74] K.D. Underwood and K.S. Hemmert, “Closing the Gap: CPU and FPGA Trends in Sustainable

Floating-Point BLAS Performance”, in Proc. FCCM, pp 219–228, 2004.

[75] K.D. Underwood, “FPGAs vs. CPUs: trends in peak floating-point performance”, in Proc.

FCCM, pp 219–228, 2004.

[76] J. Dido, N. Geraudie, L. Loiseau, O. Payeur, Y. Savaria and D. Poirier, “A flexible floating-

point format for optimizing data-paths and operators in FPGA based DSPs”, in Proc. FPGA,

pp 50–55, 2002.

[77] G.L. Zhang, P.H.W. Leong, C.H. Ho, K.H. Tsoi, C.C.C.Cheung, D.-U. Lee, R.C.C.Cheung,

W. Luk, “Reconfigurable acceleration for Monte Carlo based financial simulation”, in Proc.

FPT, pp 215–222, 2005.

83

[78] O. Callanan, D. Gregg, A. Nisbet and M. Peardon, “High Performance Scientific Computing

Using FPGAs with IEEE Floating Point and Logarithmic Arithmetic for Lattice QCD”, in

Proc. FPL, pp 29–34, 2006.

[79] L. Zhuo and V.K. Prasanna, “Scalable and modular algorithms for floating-point matrix mul-

tiplication on FPGAs”, in Proc. FCCM, pp 26–30, 2004.

[80] G.R. Morris, V.K. Prasanna, “An FPGA-based floating-point Jacobi iterative solver”, in Proc.

Parallel Architectures, Algorithms and Networks, 2005.

[81] Celoxica Limited, “Handel-C Language Reference Manual”, in Product Documentation, 2004.

84

	Introduction
	Related Work
	FPGA architecture
	FPGA-based floating point units
	Floating point applications
	FPGA design tools
	Benchmark Circuits
	Digital Sine-Cosine Generator (dscg)
	Ordinary Differential Equation (ode)
	Matrix Multiplication (mm3)
	FIR Filter (fir4)
	Butterfly Circuit (bfly)
	Brace, Gatarek and Musiela (bgm)

	Summary

	Virtual Embedded Block
	Methodology: Generic Aspects
	Methodology: Vendor Specific Aspects
	VEB Delay and Area model
	Integration of VEB into toolchain

	Results
	Verification of the VEB Approach
	Faster Embedded Multipliers
	Embedded Floating-Point Unit
	Impact of Embedded Block Performance

	Summary

	Synthesisable Datapath FPGA Fabric
	Architecture
	Requirements of a synthesisable architecture
	Our architecture

	Example Mapping
	Parameter optimisation
	Mapping results
	Benchmark circuits
	Optimised parameters
	Derived parameters

	Proof-of-concept layout
	Comparison to previous work
	Fine-grained synthesisable fabric
	Datapath-oriented FPGAs
	Coarse-grained fabrics

	Summary

	Hybrid Floating Point FPGA
	Introduction
	Generic domain-specific hybrid FPGA
	Floating point hybrid FPGA architecture
	Requirements
	Architecture
	Design flow

	Modelling of a hybrid FPGA
	Soft-core embedded floating point units
	Synthesisable coarse-grained units
	Integration with fine-grained units

	Results
	Example mapping
	Comparison with existing FPGA devices
	Comparison with previous work

	Summary

	Conclusion and Future Work

