
1

Floating Point FPGA: Architecture and Modelling
Chun Hok Ho, Chi Wai Yu, Philip Leong, Wayne Luk, Steven J.E. Wilton

Abstract—This paper presents an architecture for a reconfig-
urable device which is specifically optimised for floating point
applications. Fine-grained units are used for implementing con-
trol logic and bit-oriented operations, while parameterised and
reconfigurable word-based coarse-grained units incorporating
word-oriented lookup tables and floating point operations are
used to implement datapaths. In order to facilitate comparison
with existing FPGA devices, the virtual embedded block (VEB)
scheme is proposed to model embedded blocks using existing
FPGA tools. This methodology involves adopting existing FPGA
resources to model the size, position and delay of the embedded
elements. The standard design flow offered by FPGA and CAD
vendors is then applied and static timing analysis can be used
to estimate the performance of the FPGA with the embedded
blocks. On selected floating point benchmark circuits, our results
indicate that the proposed architecture can achieve 4 times
improvement in speed and 25 times reduction in area compared
with a traditional FPGA device.

Index Terms—FPGA, Floating point, Embedded blocks, Mod-
elling, Architecture

I. I NTRODUCTION

Field Programmable Gate Array (FPGA) technology has
been widely adopted to speed up computationally intensive ap-
plications. Most current FPGA devices employ an island-style
fine-grained architecture [1], with additional fixed-function
heterogeneous blocks such as multipliers and block RAMs;
these have been shown to have severe area penalties compared
with Application Specific Integrated Circuits (ASICs) [2].In
this work, we propose an architecture for FPGAs which are
optimised for floating point applications. Such devices could
be used for applications in digital signal processing (DSP),
control, high performance computing and other applications
where the large dynamic range, convenience, and ease of
verification compared with traditional fixed point designs on
conventional FPGAs.

The proposed Floating Point FPGA (FPFPGA) architecture
has both fine and coarse-grained blocks, such usage of multiple
granularity having advantages in speed, density and power
over more conventional heterogeneous FPGAs. The coarse-
grained block is used to implement the datapath, while lookup
table (LUT) based fine-grained resources are used for im-
plementing state machines and bit level operations. In our
architecture, the coarse-grained blocks have flexible, param-
eterised architectures which are synthesised from a hardware
description language. This allows tuning of the parametersin
a quantitative manner to achieve a good balance between area,
performance and flexibility.

C.H. Ho, C.W. Yu and W. Luk are with the Department of Computing,
Imperial College, London.

P. Leong is with the Department of Computing Science and Engineering,
Chinese University of Hong Kong, Shatin, Hong Kong.

S.J.E. Wilton is with the Department of Electrical and Computer Engineer-
ing, University of British Columbia, Vancouver, B.C., Canada.

One major issue when evaluating new architectures is deter-
mining how a fair comparison to existing commercial FPGA
architectures can be made. The Versatile Place and Route
(VPR) tool [1] is widely used in FPGA architecture research,
however, the CAD algorithms used within are different to those
of modern FPGAs, as is its underlying island-style FPGA
architecture. As examples, VPR does not support retiming, nor
does it support carry-chains which are present in all major
FPGA devices. To enable modelling of our FPFPGA and
comparison with a standard island-style FPGA, we propose
a methodology to evaluate an architecture based on an ex-
isting FPGA device. The key element of our methodology
is to adopt virtual embedded blocks (VEBs), created from
the reconfigurable fabric of an existing FPGA, to model the
area, placement and delay of the embedded blocks to be
included in the FPGA fabric. Using this method, the impact
of incorporating embedded elements on performance and area
can be quickly evaluated, even if an actual implementation of
the element is not available.

The key contribution of this paper are:
• A novel FPFPGA architecture combining fine-grained

resources combined with design-time parameterisable
coarse-grained units that are reconfigurable at runtime.
To the best of our knowledge, this is the first time such
a scheme has been proposed.

• The virtual embedded block (VEB) methodology which
allows modelling of FPGA architectures with embedded
blocks and comparisons with commercial FPGAs.

• Experimental results over various applications for the
FPFPGA device.

This paper is organised as follows. Section II describes
related work and existing FPGA architectures. Section III
describes the proposed FPFPGA architecture. An example
mapping is presented in Section IV. Section V discusses
the requirements and the associated design challenges of an
FPFPGA compiler. The evaluation methodology, including
a review of the Virtual Embedded Block (VEB) flow, is
described in Section VI, and the evaluation is in Section VII.
Section VIII summarises our work and discusses opportunities
for future research.

II. BACKGROUND

A. Related work

FPGA architectures containing coarse-grained units have
been reported in the literature. Compton and Hauck propose
a domain-specific architecture which allows the generationof
a reconfigurable fabric according to the needs of the applica-
tion [3]. Ye and Rose suggest a coarse-grained architecture
that employs bus-based connections, achieving a 14% area
reduction for datapath circuits [4].

2

The study of embedded heterogeneous blocks for the ac-
celeration of floating point computations has been reported
by Roseler and Nelson [5] as well as Beauchamp et. al. [6].
Both studies conclude that employing heterogeneous blocks
in a floating point unit (FPU) can achieve area saving and
increased clock rate over a fine grained approach.

Leijten-Nowak and van Meerbergen [7] proposed mixed-
level granularity logic blocks and compared their benefits with
a standard island-style FPGA using the VPR tool [1]. Ye, Rose
and Lewis [8] studied the effects of coarse-grained logic cells
and routing resources for datapath circuits, also using VPR.
Kuon [2] reported the effectiveness of embedded elements in
current FPGA devices by comparing such designs with the
equivalent ASIC circuit in 90nm process technology.

Beck modified VPR to explore the effects of introducing
hard macros [9], while Beauchamp et. al. augmented VPR
to assess the impact of embedding floating point units in
FPGAs [6]. We are not aware of studies concerning the effect
of adding arbitrary embedded blocks to existing commercial
FPGA devices, nor of methodologies to facilitate such studies.

In earlier work, we described the virtual embedded block
(VEB) technique for modelling heterogeneous blocks using
commercial tools [10], domain-specific hybrid FPGAs [11]
and a word-based synthesisable FPGA architecture [12]. This
paper provides a unified view of these studies; describes
the proposed FPGA architecture in greater detail; presents
improved results through the use of a higher performance
commercial floating point core; introduces the mapping pro-
cess for the FPFPGA; discusses the requirement of a hardware
compiler dedicated to such FPFPGA device; and includes two
new synthetic benchmark circuits in the study, one of which
is twice the size of the largest circuit studied previously.

B. FPGA architectures

An FPGA is typically constructed as an array of fine-grained
or coarse-grained units. A typical fine-grained unit is aK-
input lookup table (LUT), whereK typically ranges from 4
to 7, and can implement anyK-input boolean equation. We
call this a LUT-based fabric. Several LUT-based cells can be
joined in a hardwired manner to make a cluster. This greatly
reduces area and routing resources within the fabric [13].

Heterogeneous functional blocks are found in commercial
FPGA devices. For example, a Virtex II device has embedded
fixed-function 18-bit multipliers, and a Xilinx Virtex 4 device
has embedded DSP units with 18-bit multipliers and 48-bit
accumulators. The flexibility of these blocks is limited andit
is less common to build a digital system solely using these
blocks. When the blocks are not used, they consume die area
without adding to functionality.

FPGA fabric can have different levels of granularity. In
general, a unit of smaller granularity has more flexibility,but
can be less effective in speed, area and power consumption.
Fabrics with different granularity can coexist as evident in
many commercial FPGA devices. Most importantly, the above
examples illustrate that FPGA architectures are evolving to be
more coarse-grained and application-specific. The proposed
architecture in this paper follows this trend, focusing on
floating point computations.

III. FPFPGA ARCHITECTURE

A. Requirements

Before we introduce the FPFPGA architecture, common
characteristics of what we consider a reasonably large class of
floating point applications which might be suitable for signal
processing, linear algebra and simulation are first described.
Although the following analysis is qualitative, it is possible to
develop the architecture in a quantitative fashion by profiling
application circuits in a specific domain.

In general, FPGA-based floating point application circuits
can be divided into control and datapath portions. The datapath
typically contains floating point operators such as adders,
subtractors, and multipliers, and occasionally square root and
division operations. The datapath often occupies most of the
area in an implementation of the application. Existing FPGA
devices are not optimised for floating point computations and
for this reason, floating point operators consume a significant
amount of FPGA resources. For instance, if the embedded
DSP48 blocks are not used, a double precision floating point
adder requires 701 slices on a Xilinx Virtex 4 FPGA, while a
double precision floating point multiplier requires 1238 slices
on the same device [14].

The floating point precision is usually a constant within an
application. The IEEE 754 single precision format (32-bit)or
double precision format (64-bit) is commonly used.

The datapath can often be pipelined and connections within
the datapath may be uni-directional in nature. Occasionally
there is feedback in the datapath for some operations such as
accumulation. The control circuit is usually much simpler than
the datapath and therefore the area consumption is typically
lower. Control is usually implemented as a finite state machine
and most FPGA synthesis tools can produce an efficient
mapping from the boolean logic of the state machine into fine-
grained FPGA resources.

Based on the above analysis, some basic requirements for
FPFPGA architectures can be derived.

• A number of coarse-grained floating point addition and
multiplication blocks are necessary since most compu-
tations are based on these primitive operations. Floating
point division and square root operators can be optional,
depending on the domain-specific requirement.

• Coarse-grained interconnection, fabric and bus-based op-
erations are required to allow efficient implementation
and interconnection between fixed-function operators.

• Dedicated output registers for storing floating point values
are required to support pipelining.

• Fine-grained units and suitable interconnections are re-
quired to support implementation of state machines and
bit-oriented operations. These fine-grained units should
be accessible by the coarse-grained units and vice versa.

B. Architecture

Figure 1 shows a top-level block diagram of our FPFPGA
architecture. It employs an island-style fine-grained FPGA
structure with dedicated columns for coarse-grained units.
Both fine-grained and coarse-grained units are reconfigurable.
The coarse-grained part contains embedded fixed-function

3

floating point adders and multipliers. The connection between
coarse-grained units and fine-grained units is similar to the
connection between embedded blocks (embedded multiplier,
DSP block or block RAM) and fine-grained units in existing
FPGA devices.

The coarse-grained logic architecture is optimised to im-
plement the datapath portion of floating point applications.
The architecture of each block, inspired by previous work [4],
[12], is shown in Figure 2. Each block consists of a set
of floating point multipliers, adder/subtractors, and general-
purpose bitblocks connected using a uni-directional bus-based
interconnect architecture. Each of these blocks will be dis-
cussed in this section. To keep our discussion general, we
have parameterised the architecture as shown in Table I. There
areD subblocks in each coarse-grained block.P of theseD

subblocks are floating point multipliers, anotherP of them
are floating point adders and the rest (D − 2P) are general-
purpose wordblocks. Specific values of these parameters will
be given in Section VI.

Symbol Parameter Description

D Number of blocks (Including FPUs, wordblocks)
N Bus Width
M Number of Input Buses
R Number of Output Buses
F Number of Feedback Paths
P Number of Floating Point Adders and Multipliers

TABLE I: Parameters for the coarse-grained unit.

The core of each coarse-grained block containsP multiplier
andP adder/subtractor subblocks. Each of these blocks has a
reconfigurable registered output, and associated control input
and status output signals. The control signal is a write enable
signal that controls the output register. The status signals report
the subblock’s status flags and include those defined in IEEE
standard as well as a zero and sign flag. The fine-grained unit
can monitor these flags via the routing paths between them.������������ 	��
�

������������� 	��
� ��
��������� ���
��� ���
 	��
�
Fig. 1: Architecture of the FPFPGA.

Each coarse-grained block also contains general-purpose
wordblocks. Each wordblock containsD identical bitblocks,
and is similar to our earlier published design [12]. A bitblock

contains two 4-input LUTs and a reconfigurable output regis-
ter. The value ofN depends on the bit-width of the coarse-
grained block. Bitblocks within a wordblock are all controlled
by the same set of configuration bits, so all bitblocks within
a wordblock perform the same function. A wordblock, which
includes a register, can efficiently implement operations such
as fixed point addition and multiplexing. Like the multiplier
and adder/subtractor blocks, wordblocks generate status flags
such as most-significant bit (MSB), least-significant bit (LSB),
carry out, overflow and zero; these signals can be connected
to the fine-grained units.

Apart from the control and status signals, there areM

input buses andR output buses connected to the fine-grained
units. Each subblock can only accept inputs from the left,
simplifying the routing. To allow more flexibility,F feedback
registers have been employed so that a block can accept the
output from the right block through the feedback registers.For
example, the first block can only accept input from input buses
and feedback registers, while the second block can accept input
from input buses, the feedback registers and the output of the
first block. Each floating point multiplier is logically located to
the left of a floating point adder so that no feedback registeris
required to support multiply-and-add operations. The coarse-
grained units can support multiply-accumulate functions by
utilising the feedback registers. The bus width of the coarse-
grained units is 32-bit for the single precision FPFPGA and
64-bit for double precision.

Switches in the coarse-grained unit are implemented using
multiplexers and are bus-oriented. A single set of configuration
bits is required to control each multiplexer, improving density
compared to a fine-grained fabric.

IV. EXAMPLE MAPPING

To illustrate how our architecture can be used to implement
a datapath, we use the example of a floating point matrix
multiply. Figure 3 illustrates the example datapath and the
implementation of this datapath on our architecture. In this
example, we assume an architecture in which the multiplica-
tion subblocks are located in the second and sixth subblock
within the architecture and floating point adder/subtractor units
are located in the third and the seventh subblock.

The datapath of this example application can be imple-
mented using two coarse-grained blocks. The datapath pro-
duces the result of the equationd0×d2 + d1×d3 + d4×d5.
The first coarse-grained unit performs two multiplicationsand
one addition. The result (r1) is forwarded to the next coarse-
grained unit. The second coarse-grained unit performs one
multiplication and one addition. However, as all multiplica-
tions start in the same clock cycle, the last addition cannot
start untilr1 is ready. In order to synchronise the arrival time
of r1 and d4×d5, another floating point adder (FA2) in the
second coarse-grained block is instantiated as a FIFO with the
same latency as FA6 in CGU0. This demonstrates an alternate
use of a coarse-grained unit. Finallyr1 andd4×d5 are added
together and the state machine sends the result to the block
RAM. All FPU subblocks have an enabled registered output
to further pipeline the datapath.

4

��������
��� !�� " # �"

$ %
�&���#''

��� !�� " # �"
�()*�+�,-
-. /-. �-. &-. 0*�

��� !�� " # �"
1� �� 2�34��� 5�"6" 728

966'-#�:;6<." 6!" 798 966'-#�:2�3
1� �� 5�"6"7;8

��� !��

=�� !�� >.<�#� 4��� > # �" 9�#< 1� ��
?@ABCDEFGADECHI@CDJ@DKL ?@ABCDEFGADEC MNNKLOPIQCLBRCAL

" # �"

-. /-. �-. &-. 0*�
��� !�� " # �"

�/�,-
Fig. 2: Architecture of the coarse-grained unit.

STUV STUWSTUXSTUY Z[\]^_`abc`abdefghi jkl dmlnopqr ks
efghi jkl cmlnopqr estuvuwxvyz{|wn}}p~��

n}}p~��
}non
}non efghi jkl �mlnopqr `sn}}p~��� �~�� ���� �� ��Z���

(a) Fine-grained unit mapping.

�������� ��� ��� ��� ������������ ������������� ��¡ ��¢ ��£
�������� ��� ��� ��� ���������¤ �¥¦§ ©̈��¡ ��¢ ��£���ª ���������«�

(b) Coarse-grained unit mapping.

Fig. 3: Example mapping for matrix multiplication.

V. FPFPGA COMPILATION

While traditional HDL design flow can be used in translat-
ing applications to our FPFPGA, the procedure is tedious and
the designers have to fully understand the usage of the coarse-
grained units in order to manually map the circuit effectively.
A domain-specific hardware compiler which can map a subset
of a high-level language to the proposed architecture is useful
in developing applications on such an FPFPGA. In addition,
the hardware compiler is beneficial during the development of
the FPFPGA itself since the compiler can be used to generate
benchmark circuits. Although we have not implemented such
a compiler, this section proposes the basic requirements ofthe
compiler and discusses how some of the design challenges can
be addressed.

The basic requirements of the FPFPGA compiler are as
follows:

1) The compiler should contain a set of pre-defined built-in
functions which represent the functionality in the coarse-
grained unit. For example, the compiler can provide
floating point functions such asfadd(), fmul() (or
even better, overloaded operators such as “+” or “*”)
which associate with the floating operators in the coarse-

grained unit. This feature allows application designers to
infer the coarse-grained units easily.

2) It should have the ability to differentiate the control logic
and the datapath. This feature would allow the technology
mapper to handle the control logic and the datapath
separately. Since the control logic can be efficiently
implemented using the fine-grained logic, a standard
hardware compilation technique such as [15] can be used.
The datapath, which is usually much more complicated,
can be mapped to coarse-grained units whenever it is
possible.

3) The compiler should contain a parametrisable technology
mapper for the coarse-grained architecture. Since this
is parametrised for design exploration, the technology
mapper should map to devices with differing amounts
of coarse-grained resources. For example, the technology
mapper should be aware of the number of floating point
operator in a coarse-grained unit so it can fully utilise all
the operators in an unit. This feature would allow FPGA
designers to evaluate new architectures effectively by
compiling benchmark circuits with modified architectural
parameters.

5

4) The compiler should contain an intelligent resource allo-
cation algorithm. It should be aware of the functionality
of the coarse-grained unit and decide if the given op-
eration is best implemented by coarse-grained units or
fine-grained units. For example, if the compiler receives
a “square root” instruction but there is no square root
function in the coarse-grained units, the allocation algo-
rithm can infer a square root operator using fine-grained
unit instead.

5) Support is required for bitstream generation for coarse-
grained units. Such a feature is necessary to determine
the delay of a mapped coarse-grained unit.

Requirements 1, 4, and 5 have been studied in other
contexts [16], and Requirement 2 has been addressed in [17]
in which the authors propose a compiler that can produce
separate circuits for control logic and datapath for floating
point applications. Requirement 3 is new, and is specific for
our architecture. One approach to creating this tool would be to
develop a dedicated technology mapper for the coarse-grained
units within the Trident framework [17]. A bitstream generator
for coarse-grained units can be integrated into the framework
as well. This is on-going work.

VI. M ODELLING METHODOLOGY

In this section, we describe the methodology we use to
model our architecture. We employ an experimental approach
and use the concept of Virtual Embedded Blocks (VEB) to
model the embedded coarse-grained blocks. The following
subsections first describe the benchmark circuits we used,
followed by a description of the Virtual Embedded Block
methodology.

A. Benchmark Circuits

Circuit # of Add/Sub # of Mul Domain Nature

bfly 4 4 DSP kernel
dscg 2 4 DSP kernel
fir 3 4 DSP kernel

mm3 2 3 Linear Algebra kernel
ode 3 2 Linear Algebra kernel
bgm 9 11 Finance application
syn2 5 4 N/A synthetic
syn7 25 25 N/A synthetic

TABLE II: Benchmark circuits

Eight benchmark circuits are used in this study as shown
in Table II. Five are computational kernels, one is a Monte
Carlo simulation datapath, and two are synthetic circuits.All
benchmark circuits involve single precision floating opera-
tions. We choose these circuits since they are representative
of the applications we envision being used on an FPFPGA.
We note that the strong representation of simple floating point
kernels that map directly to the CGU favourably influences the
overall density and performance metrics so our results can be
considered an upper bound. Dependencies, mapping, control
and interfacing are issues likely to degrade performance.

Thebfly benchmark performs the computationz = y+x∗w

where the inputs and output are complex numbers; this is

commonly used within a Fast Fourier Transform computation.
The dscg circuit is the datapath of a digital sine-cosine
generator. Thefir circuit is a 4-tap finite impulse response
filter. Themm3circuit performs a 3-by-3 matrix multiplication.
The ode circuit solves an ordinary differential equation. The
bgmcircuit computes Monte Carlo simulations of interest rate
model derivatives priced under the Brace, Ga̧tarek and Musiela
(BGM) framework [18]. All the wordlengths of the above
circuits are 32 bit.

In addition, a synthetic benchmark circuit generator based
on [19] is used. The generator can produce floating point
circuits from a characterisation file describing circuit and
cluster statistics. Two synthetic benchmark circuits are pro-
duced. Circuitsyn2contains five floating point adders and four
floating point multipliers. Circuitsyn7 contains 25 floating
point adder and 25 floating point multipliers. Thesyn7circuit
is considerably larger than the other benchmarks.

B. Virtual Embedded Block Methodology

To model the mapping of our benchmark circuits on the
architecture described in Section III, we employ the Virtual
Embedded Block methodology. This methodology allows us
to quantify the impact of embedding our block into a modern
FPGA using commercial CAD tool optimisations. This is in
contrast to VPR-based methodologies which assume a bare-
bone island-style FPGA (without carry chains and with a
simplified routing architecture) and do not employ modern
optimisations such as physical synthesis and retiming.

Figure 4 illustrates the modelling flow using the VEB
methodology. The input is a high level application description
and the output is an FPGA bitstream. The application is first
broken into control logic and datapath portions. Since we do
not yet have a complete implementation of a suitable compiler,
we perform this step manually.

The datapath portion is then mapped to the embedded float-
ing point blocks (again, this is currently done manually). An
example of this mapping was given in Section IV. The result of
this step is a netlist containing black boxes representing those
parts of the circuit that will be mapped to embedded blocks,
and fine-grained logic elements representing those parts ofthe
circuit that will be mapped to lookup-tables in the cases that
no suitable embedded block is found or all have been used.

Unfortunately, this netlist cannot be implemented directly
using commercial FPGA CAD tools, since the corresponding
commercial FPGAs do not contain our floating point embed-
ded blocks. The basic strategy in our VEB flow is to use
selected logic resources of a commercial FPGA (called the
hostFPGA) to match the expected position, area and delay of
an ASIC implementation of the coarse-grained units, as shown
in Figure 5.

To employ this methodology, area and delay models for
the coarse-grained are required. To estimate the area, we
synthesise an ASIC description of each coarse-grained block
using a comparable technology. For instance, 0.13µm tech-
nology is used in synthesising the ASIC block embedded in a
Virtex II device which in turn uses a 0.15µm/0.12µm process.
Normalisation to the feature size is then applied to obtain a

6

Distributed VEBs in a virtual FPGA
Embedded Block in ASIC

tpd

L

W

Equivalent VEB using LC

L'

W
'

WL ≈ W' L'
tpd ≈ tpd'

tpd'

Fig. 5: Modelling coarse-grained unit in FPGAs using Virtual Embedded Blocks.

fine-grained unit

a b d e + c

a>b cwe

finish

start

a>b
cwe

coarse-grained unit with embedded blocks

process (clk) begin

if (clk = ‘1’ and clk’event’)

then

 start <= finish; end if;

end process;

cwe <= start and a_ge_b;

U0: coarse_grained_unit

port map

(clk, a_ge_b, cwe, ...);

HDL

description

HDL

synthesis

Fine-grained netlist

0010101011.....

 Bitstream

generation

Coarse-grained ASIC

model

Timing model

Timing

analysis

Area model

VEB netlist

VEB

compilation

Host FPGA

device

Timing and area of

Floating point FPGA

Place and route

if (a > b) {

 c = d + e;

}

start

a>b cwe

finish

Control logic

recognition

Datapath

recognition

Application in

high level

description

Physical

mapping

(fine-grained)

Physical

mapping

(coarse-grained)

finite state machine

a b

d e

+

c
directed cyclic graph

Area

analysis

Fig. 4: Modelling flow overview.

more accurate area estimation. We employ a parameterised
synthesisable IEEE 754 compliant floating point library [20].
The library supports four rounding modes and denormalised
numbers. A floating point multiplier and floating point adder
are generated and synthesised using a regular standard cell
library flow.

The area of the coarse-grained block is then translated into
equivalent logic cell resources in the virtual FPGA. In order
to make this translation, an estimate of the area of a logic

cell (LC) in the FPGA is required, where a logic cell refers
to a 4-input lookup table and an associated output register.
The area estimation includes the associated routing resources
and configuration bits. All area measures are normalised by
dividing the actual area by the square of the feature size,
making them independent of feature size. VEB utilisation can
then be computed as the normalised area of the coarse-grained
unit divided by the normalised area of a logic cell. This value
is in units of equivalent logic cells, and the mapping en-
ables modelling of coarse-grained units using existing FPGA
resources. In addition, special consideration is given to the
interface between the LCs and the VEB to ensure that the
corresponding VEBs has sufficient I/O pins to connect to the
routing resources. This can be verified by keeping track of
the number of inputs and outputs which connect to the global
routing resources in a LC. For example, if a logic cell only
has 2 outputs, it is not possible to have a VEB with an area
of 4 LCs that requires 9 outputs. For such a case, the area is
increased to 5 LCs.

In order to accurately model the delay, both the logic and
the wiring delay of the virtual FPGA must match that of the
host FPGA. The logic delay of the VEB can be matched by
introducing delays in the FPGA resources. In the case of very
small VEBs, it may not be possible to accurately match the
number of I/O pins, area or logic delay and it may result in
inaccuracies. A complex coarse-grained unit might have many
paths, each with different delays. In this case, we assume that
all delays are equal to the longest one (i.e. the critical path)
as it is the most important characteristic of a coarse-grained
unit in terms of timing.

In our implementation, area matching is achieved by creat-
ing a dedicated scan-chain using shift registers. A longer scan-
chain consumes more LC and therefore the VEB is larger.
There are many options available to match the timing of
a VEB. We utilize the fast carry-chains presented in most
FPGAs to generate delays that emulate the critical path in
a VEB. This choice has the added advantage that relocation
of LCs on the FPGA does not affect the timing of this circuit.

It should also be noted that the use of the carry and scan-
chains allows delay and area to be varied independently. Mod-
elling wiring delays is more problematic, since the placement

7

of the virtual FPGA must be similar to that of an FPGA with
coarse-grained units to ensure that their routing is similar. This
requires that (1) the absolute location of VEBs matches the
intended locations of real embedded blocks in the FPGA with
coarse-grained units and (2) the design tools are able to assign
instantiations of VEBs in the netlist to physical VEBs while
minimising routing delays.

The first requirement is addressed by locating VEBs at
predefined absolute locations that matches the floorplan of
the FPGA with coarse-grained units. To address (2), the
assignment of physical VEBs is currently made by two-phase
placement strategy which consists of unconstrained placement
followed by manual placement. We first assume that the VEB
can be placed anywhere on the virtual FPGA so the place
and route tools can determine the most suitable location for
each VEB. Once the optimal VEB locations are known, a
manual placement is applied to ensure that the placement of
each VEB is aligned on dedicated columns while maintaining
nearest displacement to the optimal location. We believe this
strategy can provide a reasonable placement as the locationof
each VEB is derived from the optimal placement.

There are inevitable differences between real implementa-
tions and the VEB emulated ones. In our previous work [10],
we compared an actual embedded multiplier with one mod-
elled using the VEB method. It was found that timing dif-
ference can be as large as 11% while the area is accurately
determined. We believe such errors are acceptable for the first
order estimations desired. Once a suitable coarse-grainedunit
architecture is identified, a more in-depth analysis using lower
level methods such as SPICE simulation can be performed to
confirm the results.

To instantiate all the VEBs and connect all together, we
describe the control logic and instantiate the VEBs explicitly
and connect the signals between the fine-grained units and
coarse-grained units. The design is then synthesised on the
target device and a device-specific netlist is generated. The
timing of the VEBs is also specified in the FPGA synthesis
tool.

After generating the netlist of the overall circuit, a two-
phase placement is used to locate near-optimal placement of
VEBs along dedicated columns. We then use the vendor’s
place and route tool to obtain the final area and timing results.
This represents the characterisation of a circuit implemented
on the FPFPGA with fine-grained units and routing resources
exactly the same as the targeted FPGA.

It is important to note that timing information cannot
be determined before programming the configuration bits.
Otherwise, the tool reports the worst case scenario where
the longest combinational path from the first wordblock to
the last wordblock is considered as critical path and this is
usually not the correct timing in most designs. To address
this issue, the tool has to recognise the configuration of the
coarse-grained unit before the timing analysis. Therefore, a
set of configurations is generated during manual mapping,
and the associated bitstream can be used in timing analysis.
This bitstream can be imported to the timing analysis tool, so
the tool can identify false paths during timing analysis and
produce correct timing for that particular configuration.

VII. R ESULTS

In this section, we present an evaluation of our architecture.
The flow described in the previous section is employed.

The best-fit architecture can be determined by varying the
parameters to produce a design with maximum density over
the benchmark circuits. Additional wordblocks are included,
allowing more flexibility for implementing circuits outside of
the benchmark set. Manual mappings are performed for each
benchmark. A more in-depth analysis on how those parameters
affect the application performance is on-going work.

For the single precision FPFPGA device, a Xilinx
XC2V3000-6-FF1152 FPGA is used as the host and we
assume 16 coarse-grained units. We emphasise that the pa-
rameter settings chosen for the coarse-grained block is fixed
over the entire set of benchmarks, each coarse-grained unit
having nine subblocks (D = 9), four input buses (M = 4),
three output buses (R = 3), three feedback registers (F = 3),
two floating point adders and two floating point multipliers
(P = 2). We assume that the two floating point multipliers
in the coarse-grained unit are located at the second and the
sixth subblock. The two floating point adders are located in
the third and the seventh subblock.

The coarse-grained blocks constitute 7% of the total area
of an XC2V3000 device. All FPGA results are obtained using
Synplicity Synplify Premier 9.0 for synthesis and Xilinx ISE
9.2i design tools for place and route. All ASIC results are
obtained using Synopsys Design Compiler V-2006.06.

The physical die area and photomicrograph of a Virtex II
device has been reported [21], and the normalisation of the
area of coarse-grained unit is estimated in Table III. From
inspection of the die photo, we estimate that 60% of the total
die area is used for logic cells.

This means that the area of a Virtex II LC is 5,456µm2.
This number is normalised against the feature size (0.15µm).
A similar calculation is used for the coarse-grained units.The
ASIC synthesis tool reports that the area of a single precision
coarse-grained unit is 433,780µm2. We further assume 15%
overhead after place and route the design based on our
experience [12]. The area values are normalised against the
feature size (0.13µm). The number of equivalent logic cell is
obtained through the division of coarse-grained unit area by
slice area. This shows that single precision coarse-grained unit
is equivalent to 122 LCs. Assuming each LC has two outputs,
the VEB allow maximum of 244 output pins while the coarse-
grained unit consumes 162 output pins only. Therefore, we do
not need to further adjust the area.

Single precision FPFPGA results are shown in Table IVa
and Figure 6a and 6b. A comparison between the floorplan of
the Virtex II device and the floorplan of the FPFPGA onbgm
circuit is illustrated in Figure 7.

The FPU implementation on FPGA is based on the work
in [22]. This implementation supports denormalised floating
point numbers which are required in the comparison with the
FPFPGA. The FPU area for the XC2V3000 device (seventh
column) is estimated from the distribution of LUTs, which is
reported by the FPGA synthesis tool. The logic area (eighth
column) is obtained by subtracting the FPU area from the

8

Fabric Area (A) (µm2) Feature Size (L) (µm) Normalised Area(A/L2) Area in LC Input Pin Output Pin
Virtex II LC 5,456 0.15 242,489 1 4(4) 2(2)

SP-CGU 498,847 0.13 30,203,964 122 157 (488) 162(244)
DP-CGU 1,025,624 0.13 60,687,797 251 285 (1004) 258(502)

TABLE III: Normalisation on the area of the coarse-grained units against a Virtex II LC. SP and DP stand for single precision
and double precision respectively. CGU stands for coarse-grained unit. For the values shown in the second column (Area),
15% overheads have already been applied on the coarse-grained units.

Single precision FPFPGA XC2V3000-6-FF1152 Reduction
Circuit number CGU area FGU area Total Area Delay FPU area Logic area Total Area Delay Area Delay

of CGU (LC) (LC) (LC) (ns) (LC) (LC) (LC) (ns) (times) (times)
bfly 2 244 (0.9%) 212 (0.74%) 456 (1.6%) 2.92 11,678 (41%) 988 (3.4%) 12,666 (44%) 11.6 27.8 3.99
dscg 2 244 (0.9%) 352 (1.23%) 596 (2.1%) 2.92 8,838 (31%) 406 (1.4%) 9,244 (32%) 11.3 15.5 3.88
fir 2 244 (0.9%) 14 (0.05%) 258 (0.9%) 3.20 10,118 (35%) 218 (0.8%) 10,336 (36%) 11.2 40.1 3.51

mm3 2 244 (0.9%) 268 (0.93%) 512 (1.8%) 3.86 8,004 (28%) 1,010 (3.5%) 9,014 (31%) 11.8 17.6 3.06
ode 2 244 (0.9%) 38 (0.13%) 282 (1.0%) 3.24 6,658 (23%) 282 (1.0%) 6,942 (24%) 11.1 24.6 3.44
bgm 7 854 (3.0%) 646 (2.25%) 1,500 (5.2%) 4.52 27,856 (97%) 812 (2.8%) 28,668 (100%) 13.9 19.1 3.08
syn2 3 366 (1.3%) 0 (0.0%) 366 (1.3%) 2.93 11,966 (42%) 0 (0.0%) 11,966 (42%) 11.4 32.7 3.90

syn7∗ 16 1,952 (6.8%) 0 (0.0%) 1,952 (6.8%) 2.93 61,250 (214%) 0 (0.0%) 61,250 (214%) 13.1 31.4 4.47
Geometric Mean: 24.9 3.64

(a) Single precision FPFPGA results.∗Circuit syn7cannot be fitted in a XC2V3000-6 device. The area and the delayare obtained by implementing on
a XC2V8000-5 device.

Double precision FPFPGA XC2V6000-6-FF1152 Reduction
Circuit number CGU area FGU area Total Area Delay FPU area Logic area Total Area Delay Area Delay

of CGU (LC) (LC) (LC) (ns) (LC) (LC) (LC) (ns) (times) (times)
bfly 2 504 (0.7%) 402 (0.74%) 906 (1.3%) 4.42 27,306 (40%) 1,926 (2.9%) 29,232 (43%) 21.7 32.3 4.91
dscg 2 504 (0.7%) 726 (1.07%) 1,230 (1.8%) 4.45 17,968 (27%) 404 (0.6%) 18,372 (27%) 17.3 14.9 3.89
fir 2 504 (0.7%) 12 (0.02%) 516 (0.8%) 4.38 20,290 (30%) 330 (0.5%) 20,620 (31%) 18.0 40.0 4.11

mm3 2 504 (0.7%) 458 (0.68%) 962 (1.4%) 4.25 15,058 (22%) 1,454 (2.2%) 16,512 (24%) 17.1 17.2 4.03
ode 2 504 (0.7%) 44 (0.07%) 548 (0.8%) 4.27 13,588 (20%) 478 (0.7%) 14,066 (21%) 18.6 25.7 4.35
bgm 7 1,764 (2.6%) 642 (0.95%) 2406 (1.0%) 4.55 65,836 (97%) 398 (0.6%) 66,234 (98%) 22.0 27.5 4.84
syn2 3 756 (1.1%) 0 (0%) 756 (1.1%) 4.47 24,032 (36%) 0 (0%) 24,032 (36%) 19.0 31.8 4.26

Geometric Mean: 25.7 4.33

(b) Double precision FPFPGA results. Circuitsyn7 is omitted since it cannot be fitted on any Virtex II FPGA device.

TABLE IV: FPFPGA implementation results. Values in the brackets indicate the percentages of logic cell used in corresponding
FPGA device. CGU stands for coarse-grained unit and FGU stands for fine-grained unit.

total area reported by the place and route tool. As expected,
FPU logic occupies most of the area, typically more than 90%
of the user circuits. While thesyn7 circuit cannot fit in an
XC2V3000 device, it can be tightly packed into a few coarse-
grained blocks. The circuitsyn7has 50 FPUs which consume
214% of the total FPGA area. They can fit into 16 coarse-
grained units, which constitute just 6.8% of the total FPGA
area.

Similar experiments for double precision floating point
applications have been conducted and the results are reported
in Table IVb, Figure 6c and Figure 6d. In double precision
floating point FPFPGA, we use the XC2V6000 FPGA as the
host FPGA and the comparison is done on the same device.

For both single and double precision benchmark circuits,
the proposed architecture reduces the area by a factor of 25
on average, a signficant reduction. The saving is achieved by
(1) embedded floating point operators, (2) efficient directional
routing and (3) sharing configuration bits. On larger circuits,
or on circuits with a smaller ratio of floating point operations
to random logic, the improvement will be less significant.
However, the reported ratio gives an indication of the improve-
ment possible if the architecture is well-matched to the target
applications. In essence, our architecture stands betweenASIC
and FPGA implementation. The authors in [2] suggest that the

ratio of silicon area and delay required to implement circuits in
FPGAs and ASICs is on average 35. Our proposed architecture
can reduce the gap between FPGA and ASIC from 35 times
to 1.4 times when floating point applications are implemented
on such FPGAs.

The delay reduction is also significant. In our benchmark
circuits, delay is reduced by 3.6 times on average for single
precision applications and 4.3 times on average for double
precision applications. We believe that double precision float-
ing point implementation on commercial FPGA platform is
not as effective as the single precision one. Therefore, the
double precision FPFPGA offers better delay reduction than
the single precision one. In our circuits, the critical pathis
always within the embedded floating point units, thus we
would expect a ratio similar to that between normal FPGA
and ASIC circuitry. Our results are consistent with [2] which
suggests the ratio is between 3 to 4. As the critical paths arein
the FPU, improving the timing of the FPU through full-custom
design would further increase the overall performance.

VIII. C ONCLUSION

We propose an FPFPGA architecture which involves a
combination of reconfigurable fine-grained and reconfigurable
coarse-grained units optimised for floating point computations.

9

0

5000

10000

15000

20000

25000

30000

35000

bfly dscg fir mm3 ode bgm syn2 syn7

Benchmark Circuits

E
q

u
iv

al
en

t
L

o
g

ic
 C

el
l

Single precision FPFPGA

Virtex II

(a) Single precision – area.

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

bfly dscg fir mm3 ode bgm syn2 syn7

Benchmark Circuits

D
el

ay
 (

n
s)

Single precision FPFPGA

Virtex II

(b) Single precision – delay.

0

5000

10000

15000

20000

25000

30000

35000

bfly dscg fir mm3 ode bgm syn2

Benchmark Circuits

E
q

u
iv

al
en

t
L

o
g

ic
 C

el
l

Double precision FPFPGA

Virtex II

(c) Double precision – area.

0.00

5.00

10.00

15.00

20.00

25.00

bfly dscg fir mm3 ode bgm syn2

Benchmark Circuits

D
el

ay
 (

n
s)

Double precision FPFPGA

Virtex II

(d) Double precision – delay.

Fig. 6: Comparisons of FPFPGA and Xilinx Virtex II FPGA
device.

(a) Virtex II 3000. The circuit consumes 100% of chip area.

(b) FPFPGA. Coarse-grained units are identified by tightly packed logic
cells in a rectangular region. The circuit consumes 5% of chiparea.

Fig. 7: Floorplan of the single precisionbgmcircuit on Virtex
II FPGA and FPFPGA. Area is significantly reduced by
introducing coarse-grained units.

A parameterisable description is presented which allows us
to explore different configurations of this architecture. To
provide a more accurate evaluation, we adopt a methodology
for estimating the effects of introducing embedded blocks
to commercial FPGA devices. The approach is vendor inde-
pendent and offers a rapid evaluation of arbitrary embedded
blocks in existing FPGA devices. Using this approach, we
show that the proposed FPFPGA enjoys improved speed and
density over a conventional FPGA for floating point intensive
applications. The area can be reduced by 25 times and the
frequency is increased by 4 times on average when comparing
the proposed architecture with an existing commercial FPGA
device. Current and future work includes developing auto-
mated design tools supporting facilities such as partitioning
for coarse-grained units, and exploring further architectural
customisations for a large number of domain-specific applica-
tions.

10

ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of the UK
EPSRC (grant EP/C549481/1 and grant EP/D060567/1).

REFERENCES

[1] V. Betz, J. Rose, and A. Marquardt, Eds.,Architecture and CAD for
Deep-Submicron FPGAs. Kluwer Academic Publishers, 1999.

[2] I. Kuon and J. Rose, “Measuring the gap between fpgas and asics,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 26, no. 2, pp. 203–215, Feb. 2007.

[3] K. Compton and S. Hauck, “Totem: Custom Reconfigurable Array
Generation,” inProc. FCCM, 2001, pp. 111–119.

[4] A. Ye and J. Rose, “Using Bus-Based Connections to ImproveField-
Programmable Gate-Array Density for Implementing Datapath Circuits,”
IEEE Trans. VLSI, vol. 14, no. 5, pp. 462–473, 2006.

[5] E. Roesler and B. Nelson, “Novel Optimizations for Hardware Floating-
Point Units in a Modern FPGA Architecture,” inProc. FPL, 2002, pp.
637–646.

[6] M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S. Hemmert,
“Architectural Modifications to Enhance the Floating-Point Performance
of FPGAs,” IEEE Trans. VLSI Syst., vol. 16, no. 2, pp. 177–187, 2008.

[7] K. Leijten-Nowak and J. L. van Meerbergen, “An FPGA architecture
with enhanced datapath functionality,” inProc. FPGA. New York, NY,
USA: ACM Press, 2003, pp. 195–204.

[8] A. Ye, J. Rose, and D. Lewis, “Architecture of datapath-oriented coarse-
grain logic and routing for FPGAs,” inCICC ’03: Proceedings of the
IEEE Custom Integrated Circuits Conference, 2003, pp. 61–64.

[9] L. Beck, A Place-and-Route Tool for Heterogeneous FPGAs. Dis-
tributed Mentor Project Report, Cornell University, 2004.

[10] C. Ho, P. Leong, W. Luk, S. Wilton, and S. Lopez-Buedo, “Virtual
Embedded Blocks: A Methodology for Evaluating Embedded Elements
in FPGAs,” in Proc. FCCM, 2006, pp. 35–44.

[11] C. Ho, C. Yu, P. Leong, W. Luk, and S. Wilton, “Domain-Specific FPGA:
Architecture and Floating Point Applications,” inProc. FPL, 2007, pp.
196–201.

[12] S. Wilton, C. Ho, P. Leong, W. Luk, and B.Quinton, “A Synthesizable
Datapath-Oriented Embedded FPGA Fabric,” inProc. FPGA, 2007, pp.
33–41.

[13] E. Ahmed and J. Rose, “The Effect of LUT and Cluster Size onDeep-
Submicron FPGA Performance and Density,”IEEE Trans. VLSI, vol. 12,
no. 3, pp. 288–298, March 2004.

[14] Xilinx Inc., Floating-Point Operator v3.0. Product Specification, 2005.
[15] I. Page and W. Luk,Compiling Occam into FPGAs. Abingdon EE&CS

Books, 1991, pp. 271–283.
[16] Agility Design Solution Inc.,Software Product Description for DK

Design Suite Version 5.0, April 2008.
[17] J. Tripp, M. Gokhale, and K. Peterson, “Trident: From high-level

language to hardware circuitry,”Computer, vol. 40, no. 3, pp. 28–37,
March 2007.

[18] G. Zhang, P. Leong, C. H. Ho, K. H. Tsoi, C. Cheung, D.-U. Lee,
R. Cheung, and W. Luk, “Reconfigurable acceleration for Monte Carlo
based financial simulation,” inProc. ICFPT, 2005, pp. 215–222.

[19] P. D. Kundarewich. and J. Rose, “Synthetic circuit generation using
clustering and iteration,”IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 23, no. 6, pp. 869–887, June
2004.

[20] Synopsys, Inc.,DesignWare Building Block IP, Datapath – Floating
Point Overview, December 2007.

[21] C. Yui, G. Swift, and C. Carmichael, “Single event upset susceptibility
testing of the Xilinx Virtex II FPGA,” in Military and Aerospace
Applications of Programmable Logic Conference (MAPLD), 2002.

[22] Rudolf Usselmann, Open Floating Point Unit.
http://www.opencores.org/project.cgi/web/fpu/overview, 2005.

	Introduction
	Background
	Related work
	FPGA architectures

	FPFPGA Architecture
	Requirements
	Architecture

	Example Mapping
	FPFPGA Compilation
	Modelling Methodology
	Benchmark Circuits
	Virtual Embedded Block Methodology

	Results
	Conclusion
	References

