Floating Point FPGA: Architecture and Modelling

Chun Hok Ho, Chi Wai Yu, Philip Leong, Wayne Luk, Steven J.E. Wilton

Abstract—This paper presents an architecture for a reconfig-
urable device which is specifically optimised for floating point
applications. Fine-grained units are used for implementing con-
trol logic and bit-oriented operations, while parameterised and
reconfigurable word-based coarse-grained units incorporating
word-oriented lookup tables and floating point operations are
used to implement datapaths. In order to facilitate comparison
with existing FPGA devices, the virtual embedded block (VEB)
scheme is proposed to model embedded blocks using existin
FPGA tools. This methodology involves adopting existing FPGA
resources to model the size, position and delay of the embedde
elements. The standard design flow offered by FPGA and CAD

One major issue when evaluating new architectures is deter-
mining how a fair comparison to existing commercial FPGA
architectures can be made. The Versatile Place and Route
(VPR) tool [1] is widely used in FPGA architecture research,
however, the CAD algorithms used within are different toséno
of modern FPGAs, as is its underlying island-style FPGA
architecture. As examples, VPR does not support retimiag, n

Yoes it support carry-chains which are present in all major
4dFPGA devices. To enable modelling of our FPFPGA and

comparison with a standard island-style FPGA, we propose

vendors is then applied and static timing analysis can be used a methodology to evaluate an architecture based on an ex-

to estimate the performance of the FPGA with the embedded
blocks. On selected floating point benchmark circuits, our results
indicate that the proposed architecture can achieve 4 times
improvement in speed and 25 times reduction in area compared
with a traditional FPGA device.

Index Terms—FPGA, Floating point, Embedded blocks, Mod-
elling, Architecture

I. INTRODUCTION

isting FPGA device. The key element of our methodology
is to adopt virtual embedded blocks (VEBSs), created from
the reconfigurable fabric of an existing FPGA, to model the
area, placement and delay of the embedded blocks to be
included in the FPGA fabric. Using this method, the impact
of incorporating embedded elements on performance and area
can be quickly evaluated, even if an actual implementatfon o
the element is not available.
The key contribution of this paper are:

Field Programmable Gate Array (FPGA) technology has , a novel FPFPGA architecture combining fine-grained

been widely adopted to speed up computationally intengive a
plications. Most current FPGA devices employ an islandesty

fine-grained architecture [1], with additional fixed-fuioct

heterogeneous blocks such as multipliers and block RAMSs;

resources combined with design-time parameterisable
coarse-grained units that are reconfigurable at runtime.
To the best of our knowledge, this is the first time such
a scheme has been proposed.

these have been shown to have severe area penalties comparedrne virtual embedded block (VEB) methodology which

with Application Specific Integrated Circuits (ASICs) [dh

allows modelling of FPGA architectures with embedded

this work, we propose an architecture for FPGAs which are
optimised for floating point applications. Such devicesldou
be used for applications in digital signal processing (QDSP)

blocks and comparisons with commercial FPGAs.
Experimental results over various applications for the
FPFPGA device.

control, high performance computing and other application Tpig paper is organised as follows. Sectioh Il describes

where the large dynamic range, convenience, and ease gfteq work and existing FPGA architectures. Section i
verification compared with traditional fixed point designs 0yescribes the proposed FPFPGA architecture. An example

conventional FPGAs.

mapping is presented in Section JIV. Section V discusses

The proposed Floating Point FPGA (FPFPGA) architeCtuffie requirements and the associated design challenges of an

has both fine and coarse-grained blocks, such usage of teultipprp A compiler. The evaluation methodology

including

granularity having advantages in speed, density and pOWetieyiew of the Virtual Embedded Block (VEB) flow, is
over more conventional heterogeneous FPGAs. The coar§gzcrined in Section VI, and the evaluation is in Section VII

grained block is used to implement the datapath, while |pokige tion Vil summarises our work and discusses opporesiti
table (LUT) based fine-grained resources are used for ifd; f,ture research.

plementing state machines and bit level operations. In our

architecture, the coarse-grained blocks have flexiblearpar

eterised architectures which are synthesised from a haedwa

Il. BACKGROUND

description language. This allows tuning of the parameatersA. Related work
a quantitative manner to achieve a good balance between aregpGa architectures containing coarse-grained units have

performance and flexibility.

been reported in the literature. Compton and Hauck propose

C.H. Ho, C.W. Yu and W. Luk are with the Department of Computing? domain-specific architecture which allows the generation

Imperial College, London.

P. Leong is with the Department of Computing Science and Eeging,
Chinese University of Hong Kong, Shatin, Hong Kong.

S.J.E. Wilton is with the Department of Electrical and Compiegineer-
ing, University of British Columbia, Vancouver, B.C., Calsad

a reconfigurable fabric according to the needs of the applica
tion [3]. Ye and Rose suggest a coarse-grained architecture
that employs bus-based connections, achieving a 14% area
reduction for datapath circuits [4].



The study of embedded heterogeneous blocks for the ac- 1. FPFPGA ARCHITECTURE
celeration of floating point computations has been reportgd Requirements
by Rosele_r and Nelson [5] as well as Beauchamp et. al [6]'Before we introduce the FPFPGA architecture, common
Both studies conclude that employing heterogeneous blocks - .
: : ) . . . characteristics of what we consider a reasonably large cfs
in a floating point unit (FPU) can achieve area saving aq%
increased clock rate over a fine grained approach.
Leijten-Nowak and van Meerbergen [7] proposed mixe
level granularity logic blocks and compared their benefithw
a standard island-style FPGA using the VPR tool [1]. Ye, Ro

and Lewis [8] studied the effects of coarse-grained Iogllsceaplrr’]l'catr']m; (i'rcl:zlgté X-‘ba Spc?cfif'c t(ijnomalri]ﬁt lication circuit
and routing resources for datapath circuits, also using .VPR general, ased tioating point application circurts

Kuon [2] reported the effectiveness of embedded elements i be divided _|nto cont_r ol and_datapath portions. The ditap
ically contains floating point operators such as adders,

current FPGA devices by comparing such designs with t@éobtractors and multioliers. and occasionally square aad
equivalent ASIC circuit in 98m process technology. u ' ultipliers, ' y squ

Beck modified VPR to explore the effects of introducin ivisiqn opgrations. Th? datapath oﬁe.n opcupie; mOSt ef th
hard macros [9], while Beauchamp et. al. augmented V ca in an |mpleme_nt_at|on of the gpphca_\tlon. EX|st|ng FPGA
to assess the impact of embedding floating point units vices are not optimised for floating point computationd an

FPGAs [6]. We are not aware of studies concerning the eff & this reason, floating point opergtors consume a sigmifica
of adding arbitrary embedded blocks to existing commerci [nount of FPGA resources. For instance, if the embedded

FPGA devices, nor of methodologies to facilitate such gsidi SP48 bIO.CkS are noF used, a dgyble _precision roating_point

In earlier work, we described the virtual embedded bIoc?(dder requires 701 sl!ces on a X'I'nx _Vlrtex 4.FPGA’ while a
(VEB) technigue for modelling heterogeneous blocks usi uble precision _floatmg point multiplier requires 123%ek
commercial tools [10], domain-specific hybrid FPGAs [11 the same device [14].

and a word-based synthesisable FPGA architecture [12% Thi The floating point precision is usually a constant within an
Eéslication. The IEEE 754 single precision format (32-bit)

ating point applications which might be suitable for sgn
(P_rocessing, linear algebra and simulation are first desdrib
Although the following analysis is qualitative, it is pdsi& to
éjéavelop the architecture in a quantitative fashion by prafil

paper provides a unified view of these studies; describ bl ision f ¢ (64-biD) | | q
the proposed FPGA architecture in greater detail; prese uble precision format (64- '_) IS commonly used. I
improved results through the use of a higher performan he datapath can often be pipelined and connections within

e L . .
commercial floating point core: introduces the mapping pr(ﬁﬁe datapath may be uni-directional in nature. Occasignall

cess for the FPFPGA, discusses the requirement of a hard\/\}geere Is fegdback in the da‘.ap?”? for some operat.ions such as
compiler dedicated to such FPFPGA device; and includes t gcumulatlon. The control circuit is usually much simptean

new synthetic benchmark circuits in the study, one of whici N dagipatthlz_ind thelrlefp relthe a:eg consfgnjtptlcintls typ'ﬁ.a”
is twice the size of the largest circuit studied previously. ower. Lontrol IS usually impiemented as a hinite state maghi

and most FPGA synthesis tools can produce an efficient
B. FPGA architectures mapping from the boolean logic of the state machine into fine-
e%rained FPGA resources.

Based on the above analysis, some basic requirements for
FPFPGA architectures can be derived.
« A number of coarse-grained floating point addition and
multiplication blocks are necessary since most compu-
tations are based on these primitive operations. Floating
point division and square root operators can be optional,
depending on the domain-specific requirement.
Coarse-grained interconnection, fabric and bus-based op-
erations are required to allow efficient implementation
and interconnection between fixed-function operators.
« Dedicated output registers for storing floating point value
are required to support pipelining.
Fine-grained units and suitable interconnections are re-
quired to support implementation of state machines and
bit-oriented operations. These fine-grained units should
be accessible by the coarse-grained units and vice versa.

An FPGA is typically constructed as an array of fine-grain
or coarse-grained units. A typical fine-grained unit ig<a
input lookup table (LUT), wherds typically ranges from 4
to 7, and can implement ani-input boolean equation. We
call this a LUT-based fabric. Several LUT-based cells can be
joined in a hardwired manner to make a cluster. This greatly
reduces area and routing resources within the fabric [13].

Heterogeneous functional blocks are found in commercial
FPGA devices. For example, a Virtex Il device has embedded®
fixed-function 18-bit multipliers, and a Xilinx Virtex 4 dame
has embedded DSP units with 18-bit multipliers and 48-bit
accumulators. The flexibility of these blocks is limited ahd
is less common to build a digital system solely using these
blocks. When the blocks are not used, they consume die area
without adding to functionality.

FPGA fabric can have different levels of granularity. In
general, a unit of smaller granularity has more flexibilkiyt
can be less effective in speed, area and power consumption. _
Fabrics with different granularity can coexist as evidemt iB- Architecture
many commercial FPGA devices. Most importantly, the above Figurel 1 shows a top-level block diagram of our FPFPGA
examples illustrate that FPGA architectures are evolvinget architecture. It employs an island-style fine-grained FPGA
more coarse-grained and application-specific. The prapossructure with dedicated columns for coarse-grained units
architecture in this paper follows this trend, focusing oBoth fine-grained and coarse-grained units are reconfitgirab
floating point computations. The coarse-grained part contains embedded fixed-function



floating point adders and multipliers. The connection betwe contains two 4-input LUTs and a reconfigurable output regis-
coarse-grained units and fine-grained units is similar ® tler. The value ofN depends on the bit-width of the coarse-
connection between embedded blocks (embedded multipligrained block. Bitblocks within a wordblock are all conteal
DSP block or block RAM) and fine-grained units in existingy the same set of configuration bits, so all bitblocks within
FPGA devices. a wordblock perform the same function. A wordblock, which
The coarse-grained logic architecture is optimised to inincludes a register, can efficiently implement operatiamnshs
plement the datapath portion of floating point applicationgs fixed point addition and multiplexing. Like the multiplie
The architecture of each block, inspired by previous woilk [4and adder/subtractor blocks, wordblocks generate statgs fl
[12], is shown in Figurd 2. Each block consists of a s@uch as most-significant bit (MSB), least-significant bis@),
of floating point multipliers, adder/subtractors, and gahe carry out, overflow and zero; these signals can be connected
purpose bitblocks connected using a uni-directional tagetl to the fine-grained units.
interconnect architecture. Each of these blocks will be dis Apart from the control and status signals, there arfe
cussed in this section. To keep our discussion general, iput buses and? output buses connected to the fine-grained
have parameterised the architecture as shown in Table teThenits. Each subblock can only accept inputs from the left,
are D subblocks in each coarse-grained blogkof theseD  simplifying the routing. To allow more flexibilityF' feedback
subblocks are floating point multipliers, anothBrof them registers have been employed so that a block can accept the
are floating point adders and the reél { 2P) are general- output from the right block through the feedback registecs.
purpose wordblocks. Specific values of these parametets wekample, the first block can only accept input from input suse

be given in Sectioh VI. and feedback registers, while the second block can acaeyt in
from input buses, the feedback registers and the outputeof th
[ Symbol | Parameter Description ] first block. Each floating point multiplier is logically lotsd to

D Number of blocks (Including FPUs, wordblocks the left of a floating point adder so that no feedback register
N Bus Width - inlv-and- i
i Number of Tnput BUSes req_uwed to_support multiply and_ add operations. The_smar
R Number of Output Buses g@qed units can support multlply—accumL_JIate functiogs b
F Number of Feedback Paths utilising the feedback registers. The bus width of the omars
P Number of Floating Point Adders and Multiplieris grained units is 32-bit for the single precision FPFPGA and

TABLE I: Parameters for the coarse-grained unit. ~ 64-bit for double precision.
Switches in the coarse-grained unit are implemented using

multiplexers and are bus-oriented. A single set of configpma

The core of each coarse-grained block cont&maultiplier bits is required to control each multiplexer, improving sién
and P adder/subtractor subblocks. Each of these blocks hasampared to a fine-grained fabric.
reconfigurable registered output, and associated comtpaoit i
and status output signals. The control signal is a write lenab
signal that controls the output register. The status sigregdort
the subblock’s status flags and include those defined in IEEETO illustrate how our architecture can be used to implement
standard as well as a zero and sign flag. The fine-grained uhitlatapath, we use the example of a floating point matrix
can monitor these flags via the routing paths between thenmultiply. Figure|3 illustrates the example datapath and the

implementation of this datapath on our architecture. Irs thi
Fine-grained units example, we assume an architecture in which the multiplica-
— — — tion subblocks are located in the second and sixth subblock
within the architecture and floating point adder/subtraatuts
are located in the third and the seventh subblock.

The datapath of this example application can be imple-
mented using two coarse-grained blocks. The datapath pro-
duces the result of the equatield xd2 + d1xd3 + d4xd5.

The first coarse-grained unit performs two multiplicatiamsl
one addition. The result-{) is forwarded to the next coarse-
grained unit. The second coarse-grained unit performs one
multiplication and one addition. However, as all multiplic
tions start in the same clock cycle, the last addition cannot
Coarse-grained units with start until~1 is ready. In order to synchronise the arrival time
embedded floating point units . . .
of r1 and d4xd5, another floating point adder (FA2) in the
) ) second coarse-grained block is instantiated as a FIFO tth t
Fig. 1. Architecture of the FPFPGA. same latency as FA6 in CGUO. This demonstrates an alternate
use of a coarse-grained unit. Finally andd4xd5 are added

Each coarse-grained block also contains general-purpdsgether and the state machine sends the result to the block
wordblocks. Each wordblock contain3 identical bitblocks, RAM. All FPU subblocks have an enabled registered output
and is similar to our earlier published design [12]. A bittko to further pipeline the datapath.

IV. EXAMPLE MAPPING

oooooooo
oooooooo

ooo
ooo

ooooooooo

0000000000 O0OO0OOOOOOO0OO0OO0OO0
0000000000 O0O0OO0O0O0OOO0OO0OO0O0O0
oooo0o00000000000O0O0O0O00
{ ooooooOo0OO0O0O0O0OOOO0OOO0O0O0
ooooo0ooOO00O0O0D0OOO0O0O0O0O0
ooooooOoOO0OO0O0O0OOOO0OO0OO0O0
ooooo0ooOO00O0O0D0OOO0O0O0O0O0
ooooooOoOO0OO0O0O0OOOO0OO0OO0O0
ooooooOoOO0OO0O0O0OOOO0OO0OO0O0
0000000000 O0OO0OOOOOOO0OO0OO0OO0
{ 0000000000 O0OO0OOOOOOO0OO0OO0OO0
0000000000 O0O0OOOOOOO0OO0OO0OO0

oooooooooo

2]




’ N

Control Signal Input Status Flag Output

control l status control status control status control | status
bit 0 bit 0
bit 1 - H bit 1
Floating Floating L N )
bit 2 Point Point Adder/| bit2 =
’ [ Muittiplier | Subtractor <
bit N-1 bit N-1 Output
Uo:whb UT-fomul U2:fpadd U(D-Trwb Mux Output
' RN N ’ | | Buses
! i (R)
l: il g
jjjiiiiii e
QD
Feedback P Feedback &\
Registers (F) status Mux

control

Fig. 2: Architecture of the coarse-grained unit.

do

Block RAM 0 WBO

(Matrix A)
d2

Block RAM 2

(Matrix C) d4

d5

Block RAM 1 | data
(Matrix B)

(a) Fine-grained unit mapping.

address, we

WY LY

FM1
(reg)

FM1
(reg)

0.0

FA8
(reg)

FMS

e (o)

d3

i

FA6

wB3 (reg) [

(b) Coarse-grained unit mapping.

Fig. 3: Example mapping for matrix multiplication.

V. FPFPGA MMPILATION

While traditional HDL design flow can be used in translat- )
ing applications to our FPFPGA, the procedure is tedious ang
the designers have to fully understand the usage of theeoars

grained units in order to manually map the circuit effedtive

A domain-specific hardware compiler which can map a subset

of a high-level language to the proposed architecture ifulise

in developing applications on such an FPFPGA. In addition,
the hardware compiler is beneficial during the developmént o
the FPFPGA itself since the compiler can be used to generate

benchmark circuits. Although we have not implemented suc

a compiler, this section proposes the basic requiremerttseof

be addressed.

The basic requirements of the FPFPGA compiler are as

follows:

1) The compiler should contain a set of pre-defined built-in
functions which represent the functionality in the coarse-
grained unit. For example, the compiler can provide

floating point functions such d@sadd(), fmul () (or

even better, overloaded operators such as “+” or “*”)
which associate with the floating operators in the coarse-

%)

compiler and discusses how some of the design challenges can

grained unit. This feature allows application designers to
infer the coarse-grained units easily.

It should have the ability to differentiate the contragjilo

and the datapath. This feature would allow the technology
mapper to handle the control logic and the datapath
separately. Since the control logic can be efficiently
implemented using the fine-grained logic, a standard
hardware compilation technique such as [15] can be used.
The datapath, which is usually much more complicated,
can be mapped to coarse-grained units whenever it is
possible.

The compiler should contain a parametrisable technology
mapper for the coarse-grained architecture. Since this
is parametrised for design exploration, the technology
mapper should map to devices with differing amounts
of coarse-grained resources. For example, the technology
mapper should be aware of the number of floating point
operator in a coarse-grained unit so it can fully utilise all
the operators in an unit. This feature would allow FPGA
designers to evaluate new architectures effectively by
compiling benchmark circuits with modified architectural
parameters.



4) The compiler should contain an intelligent resource-all@ommonly used within a Fast Fourier Transform computation.
cation algorithm. It should be aware of the functionalityrhe dscg circuit is the datapath of a digital sine-cosine
of the coarse-grained unit and decide if the given omenerator. Thdir circuit is a 4-tap finite impulse response
eration is best implemented by coarse-grained units filter. Themma3circuit performs a 3-by-3 matrix multiplication.
fine-grained units. For example, if the compiler receivebhe ode circuit solves an ordinary differential equation. The
a “square root” instruction but there is no square rodtgmecircuit computes Monte Carlo simulations of interest rate
function in the coarse-grained units, the allocation algonodel derivatives priced under the Brace, Gatarek and &fusi
rithm can infer a square root operator using fine-graind8GM) framework [18]. All the wordlengths of the above
unit instead. circuits are 32 bit.

5) Support is required for bitstream generation for coarse-In addition, a synthetic benchmark circuit generator based
grained units. Such a feature is necessary to determime [19] is used. The generator can produce floating point
the delay of a mapped coarse-grained unit. circuits from a characterisation file describing circuitdan

Requirements 1, 4, and 5 have been studied in oth@ster statistics. Two synthetic benchmark circuits are- p
contexts [16], and Requirement 2 has been addressed in [d@fed. Circuisyn2contains five floating point adders and four
in which the authors propose a compiler that can produfleating point multipliers. Circuitsyn7 contains 25 floating
separate circuits for control logic and datapath for flantinPoint adder and 25 floating point multipliers. Thgn7circuit
point applications. Requirement 3 is new, and is specific fif considerably larger than the other benchmarks.
our architecture. One approach to creating this tool woeltbb
deyelop a dedicat.ed technology mapper fqr the coarseegiai%_ Virtual Embedded Block Methodology
units within the Trident framework [17]. A bitstream gentera

for coarse-grained units can be integrated into the framewo 10 model the mapping of our benchmark circuits on the
as well. This is on-going work. architecture described in Section Ill, we employ the Viitua

Embedded Block methodology. This methodology allows us
to quantify the impact of embedding our block into a modern

. . ] FPGA using commercial CAD tool optimisations. This is in

In this section, we describe the methodology we use {3nirast to VPR-based methodologies which assume a bare-

model our architecture. We employ an experimental approaghne island-style FPGA (without carry chains and with a
and use the concept of Virtual Embedded Blocks (VEB) t@mpiified routing architecture) and do not employ modern
model the embedded coarse-grained blocks. The followiggiimisations such as physical synthesis and retiming.
subsections first describe the benchmark circuits we usedFigureB ilustrates the modelling flow using the VEB

followed by a description of the Virtual Embedded Bloc‘?nethodology. The input is a high level application desipt

VI. M ODELLING METHODOLOGY

methodology. and the output is an FPGA bitstream. The application is first

broken into control logic and datapath portions. Since we do

A. Benchmark Circuits not yet have a complete implementation of a suitable compile

we perform this step manually.

[ Circuit | # of Add/Sub[ #of Mul | Domain | Nature | The datapath portion is then mapped to the embedded float-
bfly 4 4 bsk kernel ing point blocks (again, this is currently done manuallyh A
dfsifg g j ng t:m:: example of this mapping was given in Section IV. The result of
mm3 > 3 Linear Algebra|  kernel this step is a netlist containing black boxes representioge
ode 3 2 Linear Algebra|  kernel parts of the circuit that will be mapped to embedded blocks,
§§$ g 141 Fi’q?/gce ag’)fr:'tch"gt'locn and fine-grained logic elements representing those pattseof
Syn7 55 55 N/A synthetic circuit that will be mapped to lookup-tables in the caseg tha

. no suitable embedded block is found or all have been used.
TABLE II: Benchmark circuits Unfortunately, this netlist cannot be implemented dixectl
using commercial FPGA CAD tools, since the corresponding
Eight benchmark circuits are used in this study as showeommercial FPGAs do not contain our floating point embed-
in Tablel1l. Five are computational kernels, one is a Monted blocks. The basic strategy in our VEB flow is to use
Carlo simulation datapath, and two are synthetic circdits. selected logic resources of a commercial FPGA (called the
benchmark circuits involve single precision floating operdiostFPGA) to match the expected position, area and delay of
tions. We choose these circuits since they are represantatin ASIC implementation of the coarse-grained units, as show
of the applications we envision being used on an FPFPGIA. Figurel 5.
We note that the strong representation of simple floatingtpoi To employ this methodology, area and delay models for
kernels that map directly to the CGU favourably influences thhe coarse-grained are required. To estimate the area, we
overall density and performance metrics so our results ean ynthesise an ASIC description of each coarse-grainekbloc
considered an upper bound. Dependencies, mapping, contrsihg a comparable technology. For instance, @i 3ech-
and interfacing are issues likely to degrade performance. nology is used in synthesising the ASIC block embedded in a
The bfly benchmark performs the computation= y+xxw  Virtex Il device which in turn uses a 0.45/0.12um process.
where the inputs and output are complex numbers; this N®rmalisation to the feature size is then applied to obtain a



/]\]“ ;HHH i X M Ll \“‘E &
3 % N : ‘I-N IX

=2

i
X
K X X l

= q} B

il

<—tpd —>
WL=W'L'

Control logic
recognition

<—tpd——=>

Embedded Block in ASIC

tpd = tpd'
Equivalent VEB using LC

E!
EI
El
|
|
|
EI
|
|

vstributed VEBs in a virtual FPGAJ

Fig. 5: Modelling coarse-grained unit in FPGAs using Viiteanbedded Blocks.

if (@a>b) {
c=d+e;

%N

Application in
high level
description

Datapath
recognition

a>b

start

finite state machine

finish

v’:’

directed cyclic graph

Phy

@ mapping
(fine-grained)

sical

Physical
mapping

(coarse-grained)
>

a>b

start cwe
finish

fine-grained unit

ojoElo

coarse-grained unit with

b/ocks

(clk, a_ge_b, cwe, ...);

HDL Bitstream

description generation
process (clk) begin Coarse-grained ASIC
if (clk = ‘1" and clk'event’) 0010101011..... model
then

start <= finish; end if; Timing Area

end process; analysis @ analysis
cwe <= start and a_ge_b;
UO: coarse_grained_unit .
port map ‘ Timing model ‘ ‘ Area model ‘

HDL
synthesis

<5

Fine-grained netlist

S comin V<
compilation
Host FPGA VEB netlist

device

:
37

<>

@ Place and route

Timing and area of
Floating point FPGA

Fig. 4: Modelling flow overview.

cell (LC) in the FPGA is required, where a logic cell refers
to a 4-input lookup table and an associated output register.
The area estimation includes the associated routing ressur
and configuration bits. All area measures are normalised by
dividing the actual area by the square of the feature size,
making them independent of feature size. VEB utilisation ca
then be computed as the normalised area of the coarse-graine
unit divided by the normalised area of a logic cell. This ealu

is in units of equivalent logic cells, and the mapping en-
ables modelling of coarse-grained units using existing APG
resources. In addition, special consideration is givenht t
interface between the LCs and the VEB to ensure that the
corresponding VEBs has sufficient /O pins to connect to the
routing resources. This can be verified by keeping track of
the number of inputs and outputs which connect to the global
routing resources in a LC. For example, if a logic cell only
has 2 outputs, it is not possible to have a VEB with an area
of 4 LCs that requires 9 outputs. For such a case, the area is
increased to 5 LCs.

In order to accurately model the delay, both the logic and
the wiring delay of the virtual FPGA must match that of the
host FPGA. The logic delay of the VEB can be matched by
introducing delays in the FPGA resources. In the case of very
small VEBs, it may not be possible to accurately match the
number of 1/O pins, area or logic delay and it may result in
inaccuracies. A complex coarse-grained unit might haveyman
paths, each with different delays. In this case, we assuate th
all delays are equal to the longest one (i.e. the criticah)pat
as it is the most important characteristic of a coarse-gdin
unit in terms of timing.

In our implementation, area matching is achieved by creat-
ing a dedicated scan-chain using shift registers. A longans

more accurate area estimation. We employ a parameterisé@in consumes more LC and therefore the VEB is larger.
synthesisable |IEEE 754 compliant floating point library][20 There are many options available to match the timing of
The library supports four rounding modes and denormalisedVEB. We utilize the fast carry-chains presented in most
numbers. A floating point multiplier and floating point addeFPGAs to generate delays that emulate the critical path in
are generated and synthesised using a regular standard @&lEB. This choice has the added advantage that relocation

library flow.

of LCs on the FPGA does not affect the timing of this circuit.

The area of the coarse-grained block is then translated intdt should also be noted that the use of the carry and scan-
equivalent logic cell resources in the virtual FPGA. In ardechains allows delay and area to be varied independently-Mod
to make this translation, an estimate of the area of a logiling wiring delays is more problematic, since the placetme



of the virtual FPGA must be similar to that of an FPGA with VIl. RESULTS

coarse-grained units to ensure that their routing is similais . . . )
In this section, we present an evaluation of our architectur

requires that (1) the absolute location of VEBs matches th}?‘ flow d ibed in th : o loved
intended locations of real embedded blocks in the FPGA witH'€ "W e;cn e .|n the previous sectlor? IS emp oye. )
The best-fit architecture can be determined by varying the

coarse-grained units and (2) the design tools are able tpnass i - ; ,
instantiations of VEBs in the netlist to physical VEBs whildarameters to produce a design with maximum density over

minimising routing delays. the b_enchmark cir_CL_Ji_ts. Ad_ditional Wo_rdblqcks_ are in_cldde
The first requirement is addressed by locating VEBs gllowing more flexibility for |mplem_ent|n9 circuits outsdof
predefined absolute locations that matches the floorplan {8 Penchmark set. Manual mappings are performed for each
the FPGA with coarse-grained units. To address (2), tﬁgnchmark.A_mor.e in-depth analyslls on hoyvthose parameters
assignment of physical VEBs is currently made by two-phagect the application performance is on-going work.
placement strategy which consists of unconstrained plapem For the single precision FPFPGA device, a Xilinx
followed by manual placement. We first assume that the VE&EC2V3000-6-FF1152 FPGA is used as the host and we
can be placed anywhere on the virtual FPGA so the pla&Sume 16 coarse-grained units. We emphasise that the pa-
and route tools can determine the most suitable location f@meter settings chosen for the coarse-grained block idl fixe
each VEB. Once the optimal VEB locations are known, 8Ver the.entlre set of benchmarks,.each coarse-grained unit
manual placement is applied to ensure that the placement’@¥ing nine subblocks/{ = 9), four input buses X/ = 4),
each VEB is aligned on dedicated columns while maintainirf§jf€€ output busesi{= 3), three feedback registers’= 3),
nearest displacement to the optimal location. We belieig tAWO floating point adders and two floating point multipliers
strategy can provide a reasonable placement as the loaztiof!” = 2). We assume that the two floating point multipliers
each VEB is derived from the optimal placement. in the coarse-grained unit are Iocat.ed at the second and Fhe
There are inevitable differences between real implemen@Xth subblock. The two floating point adders are located in
tions and the VEB emulated ones. In our previous work [10f}€ third and the seventh subblock.
we compared an actual embedded multiplier with one mod-The coarse-grained blocks constitute 7% of the total area
elled using the VEB method. It was found that timing diff an XC2V3000 device. All FPGA results are obtained using
ference can be as large as 11% while the area is accuraf@¥pplicity Synplify Premier 9.0 for synthesis and Xilinx&S
determined. We believe such errors are acceptable for ste fi-2i design tools for place and route. All ASIC results are
order estimations desired. Once a suitable coarse-grainied Obtained using Synopsys Design Compiler V-2006.06.
architecture is identified, a more in-depth analysis usimget ~ The physical die area and photomicrograph of a Virtex II
level methods such as SPICE simulation can be performedd@vice has been reported [21], and the normalisation of the
confirm the results. area of coarse-grained unit is estimated in Table Ill. From
To instantiate all the VEBs and connect all together, w@spection of the die photo, we estimate that 60% of the total
describe the control logic and instantiate the VEBs exjyici die area is used for logic cells.
and connect the signals between the fine-grained units and’his means that the area of a Virtex Il LC is 5,486°.
coarse-grained units. The design is then synthesised on s number is normalised against the feature size (0115
target device and a device-specific netlist is generateg. TA similar calculation is used for the coarse-grained uritse
timing of the VEBs is also specified in the FPGA synthesi8SIC synthesis tool reports that the area of a single praisi
tool. coarse-grained unit is 433,78@.2. We further assume 15%
After generating the netlist of the overall circuit, a twooverhead after place and route the design based on our
phase placement is used to locate near-optimal placemenewperience [12]. The area values are normalised against the
VEBs along dedicated columns. We then use the vendof@ature size (0.13n). The number of equivalent logic cell is
place and route tool to obtain the final area and timing resulebtained through the division of coarse-grained unit arga b
This represents the characterisation of a circuit implaetkn slice area. This shows that single precision coarse-giainé
on the FPFPGA with fine-grained units and routing resourcissequivalent to 122 LCs. Assuming each LC has two outputs,
exactly the same as the targeted FPGA. the VEB allow maximum of 244 output pins while the coarse-
It is important to note that timing information canno@rained unit consumes 162 output pins only. Therefore, we do
be determined before programming the configuration bitdot need to further adjust the area.
Otherwise, the tool reports the worst case scenario whereSingle precision FPFPGA results are shown in Table IVa
the longest combinational path from the first wordblock tend Figure 6a and 6b. A comparison between the floorplan of
the last wordblock is considered as critical path and this tise Virtex 1l device and the floorplan of the FPFPGA logm
usually not the correct timing in most designs. To addres#cuit is illustrated in Figure [7.
this issue, the tool has to recognise the configuration of theThe FPU implementation on FPGA is based on the work
coarse-grained unit before the timing analysis. Therefare in [22]. This implementation supports denormalised flagtin
set of configurations is generated during manual mappingpint numbers which are required in the comparison with the
and the associated bitstream can be used in timing analy§iBFPGA. The FPU area for the XC2V3000 device (seventh
This bitstream can be imported to the timing analysis toml, £olumn) is estimated from the distribution of LUTs, which is
the tool can identify false paths during timing analysis angported by the FPGA synthesis tool. The logic area (eighth
produce correct timing for that particular configuration. column) is obtained by subtracting the FPU area from the



| Fabric [ Area (A) (um®) | Feature Size (L)/m) | Normalised Area(A/L?) | Area in LC [ Input Pin | Output Pin]
Virtex I LC 5,456 0.15 242,489 1 4(4) 202)
SP-CGU 498,847 0.13 30,203,964 122 157 (488) 162(244)
DP-CGU 1,025,624 0.13 60,687,797 251 | 285 (1004) 258(502)

TABLE llI: Normalisation on the area of the coarse-graingitsiagainst a Virtex Il LC. SP and DP stand for single precisi
and double precision respectively. CGU stands for coaramed unit. For the values shown in the second column (Area)
15% overheads have already been applied on the coarsegnaiits.

Single precision FPFPGA XC2V3000-6-FF1152 Reduction
Circuit number CGU area FGU area Total Area Delay FPU area Logic area Total Area Delay Area Delay
of CGU (LC) (LC) (LC) (ns) (LC) (LC) (LC) (ns) (times) | (times)
bfly 2 244 (0.9%) | 212 (0.74%) | 456 (1.6%) 2.92 11,678 (41%) 988 (3.4%) 12,666 (44%) | 11.6 27.8 3.99
dscg 2 244 (0.9%) 352 (1.23%) 596 (2.1%) 2.92 8,838 (31%) 406 (1.4%) 9,244 (32%) 11.3 15.5 3.88
fir 2 244 (0.9%) 14 (0.05%) 258 (0.9%) 3.20 10,118 (35%) 218 (0.8%) 10,336 (36%) | 11.2 40.1 3.51
mm3 2 244 (0.9%) 268 (0.93%) 512 (1.8%) 3.86 8,004 (28%) | 1,010 (3.5%)| 9,014 (31%) 11.8 17.6 3.06
ode 2 244 (0.9%) 38 (0.13%) 282 (1.0%) 3.24 6,658 (23%) 282 (1.0%) 6,942 (24%) 11.1 24.6 3.44
bgm 7 854 (3.0%) 646 (2.25%) | 1,500 (5.2%) | 4.52 27,856 (97%) 812 (2.8%) | 28,668 (100%)| 13.9 19.1 3.08
syn2 3 366 (1.3%) 0 (0.0%) 366 (1.3%) 2.93 11,966 (42%) 0 (0.0%) 11,966 (42%) | 11.4 32.7 3.90
syn7* 16 1,952 (6.8%) 0 (0.0%) 1,952 (6.8%) | 2.93 61,250 (214%) 0 (0.0%) 61,250 (214%)| 13.1 31.4 4.47
Geometric Mean: 24.9 3.64

(a) Single precision FPFPGA resultsCircuit syn7cannot be fitted in a XC2V3000-6 device. The area and the dalbtained by implementing on

a XC2Vv8000-5 device.

Double precision FPFPGA XC2V6000-6-FF1152 Reduction
Circuit number CGU area FGU area Total Area Delay FPU area Logic area Total Area Delay Area Delay
of CGU (LC) (LC) (LC) (ns) (LC) (LC) (LC) (ns) (times) | (times)
bfly 2 504 (0.7%) | 402 (0.74%) | 906 (1.3%) 4.42 27,306 (40%) | 1,926 (2.9%) | 29,232 (43%)| 21.7 32.3 4.91
dscg 2 504 (0.7%) | 726 ( 1.07%) | 1,230 (1.8%)| 4.45 17,968 (27%) | 404 (0.6%) | 18,372 (27%)| 17.3 14.9 3.89
fir 2 504 (0.7%) 12 ( 0.02%) 516 (0.8%) 4.38 20,290 (30%) | 330 (0.5%) | 20,620 (31%)| 18.0 40.0 4.11
mm3 2 504 (0.7%) | 458 (0.68%) | 962 (1.4%) 4.25 15,058 (22%) | 1,454 (2.2%)| 16,512 (24%)| 17.1 17.2 4.03
ode 2 504 (0.7%) 44 (1 0.07%) 548 (0.8%) 4.27 13,588 (20%) | 478 (0.7%) | 14,066 (21%)| 18.6 25.7 4.35
bgm 7 1,764 (2.6%) | 642 ( 0.95%) | 2406 (1.0%) | 4.55 65,836 (97%) | 398 (0.6%) | 66,234 (98%)| 22.0 27.5 4.84
syn2 3 756 (1.1%) 0 ( 0%) 756 (1.1%) 4.47 24,032 (36%) 0 (0%) 24,032 (36%) | 19.0 31.8 4.26
Geometric Mean: 25.7 4.33

(b) Double precision FPFPGA results. Circeitn7is omitted since it cannot be fitted on any Virtex Il FPGA device

TABLE IV: FPFPGA implementation results. Values in the tkets indicate the percentages of logic cell used in corredipg
FPGA device. CGU stands for coarse-grained unit and FGUWstéor fine-grained unit.

total area reported by the place and route tool. As expectedtio of silicon area and delay required to implement cicin

FPU logic occupies most of the area, typically more than 90 GAs and ASICs is on average 35. Our proposed architecture
of the user circuits. While theyn7 circuit cannot fit in an can reduce the gap between FPGA and ASIC from 35 times
XC2Vv3000 device, it can be tightly packed into a few coarsés 1.4 times when floating point applications are impleménte
grained blocks. The circugyn7has 50 FPUs which consumeon such FPGAs.

214% of the total FPGA area. They can fit into 16 coarse- The delay reduction is also significant. In our benchmark
grained units, which constitute just 6.8% of the total FPGAircuits, delay is reduced by 3.6 times on average for single
area. precision applications and 4.3 times on average for double

Similar experiments for double precision floating poin‘precision applications. We believe that double precisioatfl

applications have been conducted and the results are egpolf9 POt implementation on commercial FPGA platform is
in Table VB, Figuré 6¢c and Figure 6d. In double precisioHOt as effective as the single precision one. Therefore, the
floating point FPFPGA, we use the XC2V6000 FPGA as tfipuble precision FPFPGA offers better delay reduction than

host FPGA and the comparison is done on the same devidd® Single precision one. In our circuits, the critical pah
always within the embedded floating point units, thus we

For both single and double precision benchmark circuitgyig expect a ratio similar to that between normal FPGA
the proposed architecture reduces the area by a factor of g2y ASIC circuitry. Our results are consistent with [2] whic
on average, a signficant reduction. The saving is achieved Qyyqests the ratio is between 3 to 4. As the critical pathinare
(1) embedded floating point operators, (2) efficient di®@l e Fpy, improving the timing of the FPU through full-custom

routing and (3) sharing configuration bits. On larger cit€Ui gesign would further increase the overall performance.
or on circuits with a smaller ratio of floating point operaiso

to random logic, the improvement will be less significant.
However, the reported ratio gives an indication of the impro
ment possible if the architecture is well-matched to thgaar We propose an FPFPGA architecture which involves a
applications. In essence, our architecture stands beth88D combination of reconfigurable fine-grained and reconfigerab
and FPGA implementation. The authors in [2] suggest that thearse-grained units optimised for floating point compaitest.

VIII. CONCLUSION



35000

30000

25000

Equivalent Logic Cell

3

10000

5000

16.00

14.00

12.00

10.00

Delay (ns)
m
8

6.00

35000

30000

25000

Equivalent Logic Cell

E

10000

5000

25.00

20.00

15.00

Delay (ns)

=

10.00

Fig. 6: Comparisons of FPFPGA and Xilinx Virtex 1l FPGA

device.

20000

15000

20000

15000

TSingle precision FPFPGA
BVirtex i

bfly

dscg fir mm3 ode bgm

Benchmark Circuits

(a) Single precision — area.

syn2

syn7

BSingle precision FPFPGA
BVirtex I

bily

dscg fir mm3 ode bgm

Benchmark Circuits

(b) Single precision — delay.

syn2

syn7

B Double precision FPFPGA
Bvirtex I

bily

dscg fir mm3 ode

Benchmark Circuits

(c) Double precision — area.

bgm

syn2

bfly

O Double precision FPFPGA
mvirtex Il

dscg fir mm3 ode

Benchmark Circuits

(d) Double precision — delay.

bgm

syn2

(a) Virtex 11 3000. The circuit consumes 100% of chip area.

(b) FPFPGA. Coarse-grained units are identified by tightlgked logic
cells in a rectangular region. The circuit consumes 5% of ehga.

Fig. 7: Floorplan of the single precisidigmcircuit on Virtex
II FPGA and FPFPGA. Area is significantly reduced by
introducing coarse-grained units.

A parameterisable description is presented which allows us
to explore different configurations of this architecture T
provide a more accurate evaluation, we adopt a methodology
for estimating the effects of introducing embedded blocks
to commercial FPGA devices. The approach is vendor inde-
pendent and offers a rapid evaluation of arbitrary embedded
blocks in existing FPGA devices. Using this approach, we
show that the proposed FPFPGA enjoys improved speed and
density over a conventional FPGA for floating point intemrsiv
applications. The area can be reduced by 25 times and the
frequency is increased by 4 times on average when comparing
the proposed architecture with an existing commercial FPGA
device. Current and future work includes developing auto-
mated design tools supporting facilities such as pariitign

for coarse-grained units, and exploring further architesdt
customisations for a large number of domain-specific applic
tions.



ACKNOWLEDGEMENT

The authors gratefully acknowledge the support of the UK
EPSRC (grant EP/C549481/1 and grant EP/D060567/1).

(1]
(2]

(3]
(4]

(5]

(6]

(7]

(8]

9]
[10]

[11]
[12]
[13]
[14]
(18]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

REFERENCES

V. Betz, J. Rose, and A. Marquardt, Ed#rchitecture and CAD for
Deep-Submicron FPGAs Kluwer Academic Publishers, 1999.

I. Kuon and J. Rose, “Measuring the gap between fpgas aik,a
IEEE Transactions on Computer-Aided Design of Integratectu@s
and Systemsvol. 26, no. 2, pp. 203-215, Feb. 2007.

K. Compton and S. Hauck, “Totem: Custom Reconfigurable yArra
Generation,” inProc. FCCM 2001, pp. 111-119.

A. Ye and J. Rose, “Using Bus-Based Connections to Impiieietd-
Programmable Gate-Array Density for Implementing Datapatbuits,”
IEEE Trans. VLSIvol. 14, no. 5, pp. 462—-473, 2006.

E. Roesler and B. Nelson, “Novel Optimizations for Hardev&loating-
Point Units in a Modern FPGA Architecture,” iRroc. FPL, 2002, pp.
637—646.

M. J. Beauchamp, S. Hauck, K. D. Underwood, and K. S. Hemmert,
“Architectural Modifications to Enhance the Floating-Rdferformance
of FPGAs,”IEEE Trans. VLSI Systvol. 16, no. 2, pp. 177-187, 2008.
K. Leijten-Nowak and J. L. van Meerbergen, “An FPGA ateture
with enhanced datapath functionality,” BFroc. FPGA New York, NY,
USA: ACM Press, 2003, pp. 195-204.

A. Ye, J. Rose, and D. Lewis, “Architecture of datapatiented coarse-
grain logic and routing for FPGAs,” i€ICC '03: Proceedings of the
IEEE Custom Integrated Circuits Conferen@903, pp. 61-64.

L. Beck, A Place-and-Route Tool for Heterogeneous FPGADis-
tributed Mentor Project Report, Cornell University, 2004.

C. Ho, P. Leong, W. Luk, S. Wilton, and S. Lopez-Buedo,irtival
Embedded Blocks: A Methodology for Evaluating Embedded Elémen
in FPGAs,” inProc. FCCM 2006, pp. 35-44.

C. Ho, C. Yu, P. Leong, W. Luk, and S. Wilton, “Domain-SpecFPGA:
Architecture and Floating Point Applications,” Proc. FPL, 2007, pp.
196-201.

S. Wilton, C. Ho, P. Leong, W. Luk, and B.Quinton, “A Shesizable
Datapath-Oriented Embedded FPGA Fabric,Pimc. FPGA 2007, pp.
33-41.

E. Ahmed and J. Rose, “The Effect of LUT and Cluster SizeDaep-
Submicron FPGA Performance and Densit{fEE Trans. VLSIvol. 12,
no. 3, pp. 288-298, March 2004.

Xilinx Inc., Floating-Point Operator v3.0 Product Specification, 2005.
I. Page and W. LukCompiling Occam into FPGAs Abingdon EE&CS
Books, 1991, pp. 271-283.

Agility Design Solution Inc., Software Product Description for DK
Design Suite Version 5.@\pril 2008.

J. Tripp, M. Gokhale, and K. Peterson, “Trident: Frongthievel
language to hardware circuitryComputer vol. 40, no. 3, pp. 28-37,
March 2007.

G. Zhang, P. Leong, C. H. Ho, K. H. Tsoi, C. Cheung, D.-leel
R. Cheung, and W. Luk, “Reconfigurable acceleration for MoGarlo
based financial simulation,” iRroc. ICFPT, 2005, pp. 215-222.

P. D. Kundarewich. and J. Rose, “Synthetic circuit gatien using
clustering and iteration [EEE Transactions on Computer-Aided Design
of Integrated Circuits and Systemeol. 23, no. 6, pp. 869-887, June
2004.

Synopsys, Inc.DesignWare Building Block IP, Datapath — Floating
Point Overview December 2007.

C. Yui, G. Swift, and C. Carmichael, “Single event upsesceptibility
testing of the Xilinx Virtex Il FPGA,” in Military and Aerospace
Applications of Programmable Logic Conference (MAPLR()02.
Rudolf Usselmann,  Open Floating Point Unit
http://www.opencores.org/project.cgi/web/fpu/ovew;j 2005.

10



	Introduction
	Background
	Related work
	FPGA architectures

	FPFPGA Architecture
	Requirements
	Architecture

	Example Mapping
	FPFPGA Compilation
	Modelling Methodology
	Benchmark Circuits
	Virtual Embedded Block Methodology

	Results
	Conclusion
	References

